Minkowski symmetry sets for 1-parameter families of plane curves
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 25 (2022), pp. 361-376
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              In this paper the generic bifurcations of the Minkowski symmetry set for 1-parameter families of plane curves are classified and the necessary and sufficient geometric criteria for each type are given. The Minkowski symmetry set is an analogue of the standard Euclidean symmetry set, and is defined to be the locus of centres of all of its bitangent pseudo-circles. It is shown that the list of possible bifurcation types is different to that of the list of possible types for the Euclidean symmetry set.
            
            
            
          
        
      @article{10_5427_jsing_2022_25q,
     author = {Graham Reeve},
     title = {Minkowski symmetry sets for 1-parameter families of plane curves},
     journal = {Journal of Singularities},
     pages = {361--376},
     publisher = {mathdoc},
     volume = {25},
     year = {2022},
     doi = {10.5427/jsing.2022.25q},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25q/}
}
                      
                      
                    TY - JOUR AU - Graham Reeve TI - Minkowski symmetry sets for 1-parameter families of plane curves JO - Journal of Singularities PY - 2022 SP - 361 EP - 376 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25q/ DO - 10.5427/jsing.2022.25q ID - 10_5427_jsing_2022_25q ER -
Graham Reeve. Minkowski symmetry sets for 1-parameter families of plane curves. Journal of Singularities, Tome 25 (2022), pp. 361-376. doi: 10.5427/jsing.2022.25q
Cité par Sources :