Minkowski symmetry sets for 1-parameter families of plane curves
Journal of Singularities, Tome 25 (2022), pp. 361-376

Voir la notice de l'article provenant de la source Journal of Singularities website

In this paper the generic bifurcations of the Minkowski symmetry set for 1-parameter families of plane curves are classified and the necessary and sufficient geometric criteria for each type are given. The Minkowski symmetry set is an analogue of the standard Euclidean symmetry set, and is defined to be the locus of centres of all of its bitangent pseudo-circles. It is shown that the list of possible bifurcation types is different to that of the list of possible types for the Euclidean symmetry set.
@article{10_5427_jsing_2022_25q,
     author = {Graham Reeve},
     title = {Minkowski symmetry sets for 1-parameter families of plane curves},
     journal = {Journal of Singularities},
     pages = {361--376},
     publisher = {mathdoc},
     volume = {25},
     year = {2022},
     doi = {10.5427/jsing.2022.25q},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25q/}
}
TY  - JOUR
AU  - Graham Reeve
TI  - Minkowski symmetry sets for 1-parameter families of plane curves
JO  - Journal of Singularities
PY  - 2022
SP  - 361
EP  - 376
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25q/
DO  - 10.5427/jsing.2022.25q
ID  - 10_5427_jsing_2022_25q
ER  - 
%0 Journal Article
%A Graham Reeve
%T Minkowski symmetry sets for 1-parameter families of plane curves
%J Journal of Singularities
%D 2022
%P 361-376
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25q/
%R 10.5427/jsing.2022.25q
%F 10_5427_jsing_2022_25q
Graham Reeve. Minkowski symmetry sets for 1-parameter families of plane curves. Journal of Singularities, Tome 25 (2022), pp. 361-376. doi: 10.5427/jsing.2022.25q

Cité par Sources :