The integral monodromy of the cycle type singularities
Journal of Singularities, Tome 25 (2022), pp. 268-298

Voir la notice de l'article provenant de la source Journal of Singularities website

The middle homology of the Milnor fiber of a quasihomogeneous polynomial with an isolated singularity is a $\Z$-lattice and comes equipped with an automorphism of finite order, the integral monodromy. Orlik (1972) made a precise conjecture, which would determine this monodromy in terms of the weights of the polynomial. Here we prove this conjecture for the cycle type singularities. A paper of Cooper (1982) with the same aim contained two mistakes. Still it is very useful. We build on it and correct the mistakes. We give additional algebraic and combinatorial results.
DOI : 10.5427/jsing.2022.25l
Classification : 55U15, 55T05, 58K10, 32S50
@article{10_5427_jsing_2022_25l,
     author = {Claus Hertling and Makiko Mase},
     title = {The integral monodromy of the cycle type singularities},
     journal = {Journal of Singularities},
     pages = {268--298},
     publisher = {mathdoc},
     volume = {25},
     year = {2022},
     doi = {10.5427/jsing.2022.25l},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25l/}
}
TY  - JOUR
AU  - Claus Hertling
AU  - Makiko Mase
TI  - The integral monodromy of the cycle type singularities
JO  - Journal of Singularities
PY  - 2022
SP  - 268
EP  - 298
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25l/
DO  - 10.5427/jsing.2022.25l
ID  - 10_5427_jsing_2022_25l
ER  - 
%0 Journal Article
%A Claus Hertling
%A Makiko Mase
%T The integral monodromy of the cycle type singularities
%J Journal of Singularities
%D 2022
%P 268-298
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25l/
%R 10.5427/jsing.2022.25l
%F 10_5427_jsing_2022_25l
Claus Hertling; Makiko Mase. The integral monodromy of the cycle type singularities. Journal of Singularities, Tome 25 (2022), pp. 268-298. doi: 10.5427/jsing.2022.25l

Cité par Sources :