Key polynomials for simple extensions of valued fields
Journal of Singularities, Tome 25 (2022), pp. 197-267

Voir la notice de l'article provenant de la source Journal of Singularities website

In this paper we present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e and reminiscent of approximate roots of Abhyankar and Moh. Given a simple transcendental extension of valued fields, we associate to it a countable well-ordered set of polynomials called key polynomials. We define limit key polynomials and give explicit formulae for them. We give an explicit bound on the order type of the set of key polynomials.
@article{10_5427_jsing_2022_25k,
     author = {F. J. Herrera Govantes and W. Mahboub and M. A. Olalla Acosta, and M. Spivakovsky},
     title = {Key polynomials for simple extensions of valued fields},
     journal = {Journal of Singularities},
     pages = {197--267},
     publisher = {mathdoc},
     volume = {25},
     year = {2022},
     doi = {10.5427/jsing.2022.25k},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25k/}
}
TY  - JOUR
AU  - F. J. Herrera Govantes
AU  - W. Mahboub
AU  - M. A. Olalla Acosta,
AU  - M. Spivakovsky
TI  - Key polynomials for simple extensions of valued fields
JO  - Journal of Singularities
PY  - 2022
SP  - 197
EP  - 267
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25k/
DO  - 10.5427/jsing.2022.25k
ID  - 10_5427_jsing_2022_25k
ER  - 
%0 Journal Article
%A F. J. Herrera Govantes
%A W. Mahboub
%A M. A. Olalla Acosta,
%A M. Spivakovsky
%T Key polynomials for simple extensions of valued fields
%J Journal of Singularities
%D 2022
%P 197-267
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25k/
%R 10.5427/jsing.2022.25k
%F 10_5427_jsing_2022_25k
F. J. Herrera Govantes; W. Mahboub; M. A. Olalla Acosta,; M. Spivakovsky. Key polynomials for simple extensions of valued fields. Journal of Singularities, Tome 25 (2022), pp. 197-267. doi: 10.5427/jsing.2022.25k

Cité par Sources :