Critical principal singularities of hypersurfaces in Euclidean 4-spaces
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 25 (2022), pp. 150-172
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              In this work will be described the principal foliations of oriented three-dimensional manifolds immersed in Euclidean 4-spaces, near the partially umbilic set when this set is not regular. The two cases considered are generic in one parameter families of immersions and the unfolding also will be analyzed.
            
            
            
          
        
      @article{10_5427_jsing_2022_25i,
     author = {Ronaldo Garcia and D\'ebora Lopes, and Jorge Sotomayor},
     title = {Critical principal singularities of hypersurfaces in {Euclidean} 4-spaces},
     journal = {Journal of Singularities},
     pages = {150--172},
     publisher = {mathdoc},
     volume = {25},
     year = {2022},
     doi = {10.5427/jsing.2022.25i},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25i/}
}
                      
                      
                    TY - JOUR AU - Ronaldo Garcia AU - Débora Lopes, AU - Jorge Sotomayor TI - Critical principal singularities of hypersurfaces in Euclidean 4-spaces JO - Journal of Singularities PY - 2022 SP - 150 EP - 172 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25i/ DO - 10.5427/jsing.2022.25i ID - 10_5427_jsing_2022_25i ER -
%0 Journal Article %A Ronaldo Garcia %A Débora Lopes, %A Jorge Sotomayor %T Critical principal singularities of hypersurfaces in Euclidean 4-spaces %J Journal of Singularities %D 2022 %P 150-172 %V 25 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.25i/ %R 10.5427/jsing.2022.25i %F 10_5427_jsing_2022_25i
Ronaldo Garcia; Débora Lopes,; Jorge Sotomayor. Critical principal singularities of hypersurfaces in Euclidean 4-spaces. Journal of Singularities, Tome 25 (2022), pp. 150-172. doi: 10.5427/jsing.2022.25i
Cité par Sources :