Homologically trivial integrable deformations of germs of holomorphic functions
Journal of Singularities, Tome 24 (2022), pp. 119-125

Voir la notice de l'article provenant de la source Journal of Singularities website

We study analytic deformations by integrable 1-forms a germ of a holomorphic function at the origin of the complex affine space in dimension three or higher. We prove that, under some mild nondegeneracy conditions on the function germ, the existence of a simple normal form for the deformation is equivalent to a homological condition: the annihilation of the deformed one-form in the first homology group of the non-singular fibers of the function germ. In many cases this implies the existence of a holomorphic first integral for the deformation.
DOI : 10.5427/jsing.2022.24d
Classification : 37F75, 57R30, 32M25, 32S65
@article{10_5427_jsing_2022_24d,
     author = {Victor Le\'on and Bruno Sc\'ardua},
     title = {Homologically trivial integrable deformations of germs of holomorphic functions},
     journal = {Journal of Singularities},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {24},
     year = {2022},
     doi = {10.5427/jsing.2022.24d},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24d/}
}
TY  - JOUR
AU  - Victor León
AU  - Bruno Scárdua
TI  - Homologically trivial integrable deformations of germs of holomorphic functions
JO  - Journal of Singularities
PY  - 2022
SP  - 119
EP  - 125
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24d/
DO  - 10.5427/jsing.2022.24d
ID  - 10_5427_jsing_2022_24d
ER  - 
%0 Journal Article
%A Victor León
%A Bruno Scárdua
%T Homologically trivial integrable deformations of germs of holomorphic functions
%J Journal of Singularities
%D 2022
%P 119-125
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24d/
%R 10.5427/jsing.2022.24d
%F 10_5427_jsing_2022_24d
Victor León; Bruno Scárdua. Homologically trivial integrable deformations of germs of holomorphic functions. Journal of Singularities, Tome 24 (2022), pp. 119-125. doi: 10.5427/jsing.2022.24d

Cité par Sources :