On the fifth Whitney cone of a complex analytic curve
Journal of Singularities, Tome 24 (2022), pp. 96-118

Voir la notice de l'article provenant de la source Journal of Singularities website

From a procedure to calculate the C_5-cone of a reduced complex analytic curve X contained in C^n at a singular point 0 in X, we extract a collection of integers that we call auxiliary multiplicities and we prove they characterize the Lipschitz type of complex curve singularities. We then use them to improve the known bounds for the number of irreducible components of the C_5-cone. We finish by giving an example showing that in a Lipschitz equisingular family of curves the number of planes in the C_5-cone may not be constant.
@article{10_5427_jsing_2022_24c,
     author = {A. Giles Flores and O. N. Silva and J. Snoussi},
     title = {On the fifth {Whitney} cone of a complex analytic curve},
     journal = {Journal of Singularities},
     pages = {96--118},
     publisher = {mathdoc},
     volume = {24},
     year = {2022},
     doi = {10.5427/jsing.2022.24c},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24c/}
}
TY  - JOUR
AU  - A. Giles Flores
AU  - O. N. Silva
AU  - J. Snoussi
TI  - On the fifth Whitney cone of a complex analytic curve
JO  - Journal of Singularities
PY  - 2022
SP  - 96
EP  - 118
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24c/
DO  - 10.5427/jsing.2022.24c
ID  - 10_5427_jsing_2022_24c
ER  - 
%0 Journal Article
%A A. Giles Flores
%A O. N. Silva
%A J. Snoussi
%T On the fifth Whitney cone of a complex analytic curve
%J Journal of Singularities
%D 2022
%P 96-118
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24c/
%R 10.5427/jsing.2022.24c
%F 10_5427_jsing_2022_24c
A. Giles Flores; O. N. Silva; J. Snoussi. On the fifth Whitney cone of a complex analytic curve. Journal of Singularities, Tome 24 (2022), pp. 96-118. doi: 10.5427/jsing.2022.24c

Cité par Sources :