Purely inseparable coverings of rational double points in positive characteristic
Journal of Singularities, Tome 24 (2022), pp. 79-95
Voir la notice de l'article provenant de la source Journal of Singularities website
We classify purely inseparable morphisms of degree p between rational double points (RDPs) in characteristic p > 0. Using such morphisms, we refine a result of Artin that any RDP admits a finite smooth covering.
@article{10_5427_jsing_2022_24b,
author = {Yuya Matsumoto},
title = {Purely inseparable coverings of rational double points in positive characteristic},
journal = {Journal of Singularities},
pages = {79--95},
publisher = {mathdoc},
volume = {24},
year = {2022},
doi = {10.5427/jsing.2022.24b},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24b/}
}
TY - JOUR AU - Yuya Matsumoto TI - Purely inseparable coverings of rational double points in positive characteristic JO - Journal of Singularities PY - 2022 SP - 79 EP - 95 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2022.24b/ DO - 10.5427/jsing.2022.24b ID - 10_5427_jsing_2022_24b ER -
Yuya Matsumoto. Purely inseparable coverings of rational double points in positive characteristic. Journal of Singularities, Tome 24 (2022), pp. 79-95. doi: 10.5427/jsing.2022.24b
Cité par Sources :