Middle multiplicative convolution and hypergeometric equations
Journal of Singularities, Tome 23 (2021), pp. 194-204
Voir la notice de l'article provenant de la source Journal of Singularities website
Using a relation due to Katz linking up additive and multiplicative convolutions, we make explicit the behaviour of some Hodge invariants by middle multiplicative convolution, following Dettweiler and Sabbah and our own previous work in the additive case. Moreover, the main theorem gives a new proof of a result of Fedorov computing the Hodge invariants of hypergeometric equations.
@article{10_5427_jsing_2021_23k,
author = {Nicolas Martin},
title = {Middle multiplicative convolution and hypergeometric equations},
journal = {Journal of Singularities},
pages = {194--204},
publisher = {mathdoc},
volume = {23},
year = {2021},
doi = {10.5427/jsing.2021.23k},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23k/}
}
TY - JOUR AU - Nicolas Martin TI - Middle multiplicative convolution and hypergeometric equations JO - Journal of Singularities PY - 2021 SP - 194 EP - 204 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23k/ DO - 10.5427/jsing.2021.23k ID - 10_5427_jsing_2021_23k ER -
Nicolas Martin. Middle multiplicative convolution and hypergeometric equations. Journal of Singularities, Tome 23 (2021), pp. 194-204. doi: 10.5427/jsing.2021.23k
Cité par Sources :