Covers of rational double points in mixed characteristic
Journal of Singularities, Tome 23 (2021), pp. 127-150
Voir la notice de l'article provenant de la source Journal of Singularities website
We further the classification of rational surface singularities. Suppose (S, n, k) is a 3-dimensional strictly Henselian regular local ring of mixed characteristic (0, p>5). We classify functions f for which S/(f) has an isolated rational singularity at the maximal ideal n. The classification of such functions are used to show that if (R, m, k) is an excellent, strictly Henselian, Gorenstein rational singularity of dimension 2 and mixed characteristic (0, p>5), then there exists a split finite cover of Spec(R) by a regular scheme. We give an application of our result to the study of 2-dimensional BCM-regular singularities in mixed characteristic.
@article{10_5427_jsing_2021_23h,
author = {J. Carvajal-Rojas and L. Ma and T. Polstra and K. Schwede, and K. Tucker},
title = {Covers of rational double points in mixed characteristic},
journal = {Journal of Singularities},
pages = {127--150},
publisher = {mathdoc},
volume = {23},
year = {2021},
doi = {10.5427/jsing.2021.23h},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23h/}
}
TY - JOUR AU - J. Carvajal-Rojas AU - L. Ma AU - T. Polstra AU - K. Schwede, AU - K. Tucker TI - Covers of rational double points in mixed characteristic JO - Journal of Singularities PY - 2021 SP - 127 EP - 150 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23h/ DO - 10.5427/jsing.2021.23h ID - 10_5427_jsing_2021_23h ER -
%0 Journal Article %A J. Carvajal-Rojas %A L. Ma %A T. Polstra %A K. Schwede, %A K. Tucker %T Covers of rational double points in mixed characteristic %J Journal of Singularities %D 2021 %P 127-150 %V 23 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23h/ %R 10.5427/jsing.2021.23h %F 10_5427_jsing_2021_23h
J. Carvajal-Rojas; L. Ma; T. Polstra; K. Schwede,; K. Tucker. Covers of rational double points in mixed characteristic. Journal of Singularities, Tome 23 (2021), pp. 127-150. doi: 10.5427/jsing.2021.23h
Cité par Sources :