Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows
Journal of Singularities, Tome 23 (2021), pp. 33-91

Voir la notice de l'article provenant de la source Journal of Singularities website

In this article, we present a dynamical homotopical cancellation theory for Gutierrez-Sotomayor singular flows φ, GS-flows, on singular surfaces M. This theory generalizes the classical theory of Morse complexes of smooth dynamical systems together with the corresponding cancellation theory for non-degenerate singularities. This is accomplished by defining a GS-chain complex for (M,φ) and computing its spectral sequence (E^r, d^r). As r increases, algebraic cancellations occur, causing modules in E^r to become trivial. The main theorems herein relate these algebraic cancellations within the spectral sequence to a family {M_r, φ_r} of GS-flows φ_r on singular surfaces M_r, all of which have the same homotopy type as M. The surprising element in these results is that the dynamical homotopical cancellation of GS-singularities of the flows φ_r are in consonance with the algebraic cancellation of the modules in E^r of its associated spectral sequence. Also, the convergence of the spectral sequence corresponds to a GS-flow φ_{\bar{r}} on M_{\bar{r}}, for some \bar{r}, with the property that φ_{\bar{r}} admits no further dynamical homotopical cancellation of GS-singularities.
DOI : 10.5427/jsing.2021.23d
Classification : 58K45, 58k60, 58K65, 55U15, 55T05, 37B30, 37D15
@article{10_5427_jsing_2021_23d,
     author = {D.V.S. Lima and S. A. Raminelli, and K. A. de Rezende},
     title = {Homotopical {Cancellation} {Theory} for {Gutierrez-Sotomayor} {Singular} {Flows}},
     journal = {Journal of Singularities},
     pages = {33--91},
     publisher = {mathdoc},
     volume = {23},
     year = {2021},
     doi = {10.5427/jsing.2021.23d},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23d/}
}
TY  - JOUR
AU  - D.V.S. Lima
AU  - S. A. Raminelli,
AU  - K. A. de Rezende
TI  - Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows
JO  - Journal of Singularities
PY  - 2021
SP  - 33
EP  - 91
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23d/
DO  - 10.5427/jsing.2021.23d
ID  - 10_5427_jsing_2021_23d
ER  - 
%0 Journal Article
%A D.V.S. Lima
%A S. A. Raminelli,
%A K. A. de Rezende
%T Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows
%J Journal of Singularities
%D 2021
%P 33-91
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23d/
%R 10.5427/jsing.2021.23d
%F 10_5427_jsing_2021_23d
D.V.S. Lima; S. A. Raminelli,; K. A. de Rezende. Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows. Journal of Singularities, Tome 23 (2021), pp. 33-91. doi: 10.5427/jsing.2021.23d

Cité par Sources :