Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows
Journal of Singularities, Tome 23 (2021), pp. 33-91
Voir la notice de l'article provenant de la source Journal of Singularities website
In this article, we present a dynamical homotopical cancellation theory for Gutierrez-Sotomayor singular flows φ, GS-flows, on singular surfaces M. This theory generalizes the classical theory of Morse complexes of smooth dynamical systems together with the corresponding cancellation theory for non-degenerate singularities. This is accomplished by defining a GS-chain complex for (M,φ) and computing its spectral sequence (E^r, d^r). As r increases, algebraic cancellations occur, causing modules in E^r to become trivial. The main theorems herein relate these algebraic cancellations within the spectral sequence to a family {M_r, φ_r} of GS-flows φ_r on singular surfaces M_r, all of which have the same homotopy type as M. The surprising element in these results is that the dynamical homotopical cancellation of GS-singularities of the flows φ_r are in consonance with the algebraic cancellation of the modules in E^r of its associated spectral sequence. Also, the convergence of the spectral sequence corresponds to a GS-flow φ_{\bar{r}} on M_{\bar{r}}, for some \bar{r}, with the property that φ_{\bar{r}} admits no further dynamical homotopical cancellation of GS-singularities.
@article{10_5427_jsing_2021_23d,
author = {D.V.S. Lima and S. A. Raminelli, and K. A. de Rezende},
title = {Homotopical {Cancellation} {Theory} for {Gutierrez-Sotomayor} {Singular} {Flows}},
journal = {Journal of Singularities},
pages = {33--91},
publisher = {mathdoc},
volume = {23},
year = {2021},
doi = {10.5427/jsing.2021.23d},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23d/}
}
TY - JOUR AU - D.V.S. Lima AU - S. A. Raminelli, AU - K. A. de Rezende TI - Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows JO - Journal of Singularities PY - 2021 SP - 33 EP - 91 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23d/ DO - 10.5427/jsing.2021.23d ID - 10_5427_jsing_2021_23d ER -
%0 Journal Article %A D.V.S. Lima %A S. A. Raminelli, %A K. A. de Rezende %T Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows %J Journal of Singularities %D 2021 %P 33-91 %V 23 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2021.23d/ %R 10.5427/jsing.2021.23d %F 10_5427_jsing_2021_23d
D.V.S. Lima; S. A. Raminelli,; K. A. de Rezende. Homotopical Cancellation Theory for Gutierrez-Sotomayor Singular Flows. Journal of Singularities, Tome 23 (2021), pp. 33-91. doi: 10.5427/jsing.2021.23d
Cité par Sources :