Morin singularities of collections of one-forms and vector fields
Journal of Singularities, Tome 22 (2020), pp. 278-314

Voir la notice de l'article provenant de la source Journal of Singularities website

Inspired by the properties of a collection of n gradient vector fields \nabla f_1, ..., \nabla f_n from a Morin map f=(f_1,...,f_n): M -> R^n$, with dim M ≥ n, we introduce the notion of Morin singularities in the context of collections of one-forms and collections of vector fields. We also study the singularities of generic one-forms which are related to specific collections (Morin collections) and we generalize a result of T. Fukuda on Euler characteristic for the case of collections of one-forms and vector fields.
DOI : 10.5427/jsing.2020.22r
Classification : 57R45, 57R70, 58K45
@article{10_5427_jsing_2020_22r,
     author = {Camila M. Ruiz},
     title = {Morin singularities of collections of one-forms and vector fields},
     journal = {Journal of Singularities},
     pages = {278--314},
     publisher = {mathdoc},
     volume = {22},
     year = {2020},
     doi = {10.5427/jsing.2020.22r},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22r/}
}
TY  - JOUR
AU  - Camila M. Ruiz
TI  - Morin singularities of collections of one-forms and vector fields
JO  - Journal of Singularities
PY  - 2020
SP  - 278
EP  - 314
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22r/
DO  - 10.5427/jsing.2020.22r
ID  - 10_5427_jsing_2020_22r
ER  - 
%0 Journal Article
%A Camila M. Ruiz
%T Morin singularities of collections of one-forms and vector fields
%J Journal of Singularities
%D 2020
%P 278-314
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22r/
%R 10.5427/jsing.2020.22r
%F 10_5427_jsing_2020_22r
Camila M. Ruiz. Morin singularities of collections of one-forms and vector fields. Journal of Singularities, Tome 22 (2020), pp. 278-314. doi: 10.5427/jsing.2020.22r

Cité par Sources :