Chaos in periodically forced reversible vector fields
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 22 (2020), pp. 227-240
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We discuss the appearance of chaos in time-periodic perturbations of reversible vector fields in the plane. We use the normal forms of codimension 1 reversible vector fields and discuss the ways a time-dependent periodic forcing term of pulse form may be added to them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is semiconjugate to a shift in a finite alphabet. The results rely on the classification of reversible vector fields and on the theory of topological horseshoes. This work is part of a project of studying periodic forcing of symmetric vector fields.
            
            
            
          
        
      @article{10_5427_jsing_2020_22p,
     author = {Isabel S. Labouriau and Elisa Sovrano},
     title = {Chaos in periodically forced reversible vector fields},
     journal = {Journal of Singularities},
     pages = {227--240},
     publisher = {mathdoc},
     volume = {22},
     year = {2020},
     doi = {10.5427/jsing.2020.22p},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22p/}
}
                      
                      
                    TY - JOUR AU - Isabel S. Labouriau AU - Elisa Sovrano TI - Chaos in periodically forced reversible vector fields JO - Journal of Singularities PY - 2020 SP - 227 EP - 240 VL - 22 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22p/ DO - 10.5427/jsing.2020.22p ID - 10_5427_jsing_2020_22p ER -
Isabel S. Labouriau; Elisa Sovrano. Chaos in periodically forced reversible vector fields. Journal of Singularities, Tome 22 (2020), pp. 227-240. doi: 10.5427/jsing.2020.22p
Cité par Sources :