A geometric description of the monodromy of Brieskorn-Pham polynomials
Journal of Singularities, Tome 22 (2020), pp. 180-189

Voir la notice de l'article provenant de la source Journal of Singularities website

We give an explicit construction of Lê's vanishing polyhedra for a Brieskorn-Pham polynomial f. Then we use it to give a geometric description of the monodromy associated to f. It allows us to write the matrix that determines the induced algebraic monodromy. In particular, this provides another proof for the Brieskorn-Pham theorem, which says that the characteristic polynomial associated to the monodromy of f is given by Δ(t) = Π(t- ω_1ω_2...ω_n), where each ω_j ranges over all a_j-th roots of unity other than 1.
@article{10_5427_jsing_2020_22k,
     author = {Aur\'elio Menegon},
     title = {A geometric description of the monodromy of {Brieskorn-Pham} polynomials},
     journal = {Journal of Singularities},
     pages = {180--189},
     publisher = {mathdoc},
     volume = {22},
     year = {2020},
     doi = {10.5427/jsing.2020.22k},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22k/}
}
TY  - JOUR
AU  - Aurélio Menegon
TI  - A geometric description of the monodromy of Brieskorn-Pham polynomials
JO  - Journal of Singularities
PY  - 2020
SP  - 180
EP  - 189
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22k/
DO  - 10.5427/jsing.2020.22k
ID  - 10_5427_jsing_2020_22k
ER  - 
%0 Journal Article
%A Aurélio Menegon
%T A geometric description of the monodromy of Brieskorn-Pham polynomials
%J Journal of Singularities
%D 2020
%P 180-189
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22k/
%R 10.5427/jsing.2020.22k
%F 10_5427_jsing_2020_22k
Aurélio Menegon. A geometric description of the monodromy of Brieskorn-Pham polynomials. Journal of Singularities, Tome 22 (2020), pp. 180-189. doi: 10.5427/jsing.2020.22k

Cité par Sources :