Duality on generalized cuspidal edges preserving singular set images and first fundamental forms
Journal of Singularities, Tome 22 (2020), pp. 59-91

Voir la notice de l'article provenant de la source Journal of Singularities website

In the second, fourth and fifth authors' previous work, a duality on generic real analytic cuspidal edges in the Euclidean 3-space R^3 preserving their singular set images and first fundamental forms, was given. Here, we call this an "isometric duality". When the singular set image has no symmetries and does not lie in a plane, the dual cuspidal edge is not congruent to the original one. In this paper, we show that this duality extends to generalized cuspidal edges in R^3, including cuspidal cross caps, and 5/2-cuspidal edges. Moreover, we give several new geometric insights on this duality.
DOI : 10.5427/jsing.2020.22e
Classification : 57R45, 53A05
@article{10_5427_jsing_2020_22e,
     author = {Atsufumi Honda and Kosuke Naokawa and Kentaro Saji and Masaaki Umehara, and Kotaro Yamada},
     title = {Duality on generalized cuspidal edges preserving singular set images and first fundamental forms},
     journal = {Journal of Singularities},
     pages = {59--91},
     publisher = {mathdoc},
     volume = {22},
     year = {2020},
     doi = {10.5427/jsing.2020.22e},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22e/}
}
TY  - JOUR
AU  - Atsufumi Honda
AU  - Kosuke Naokawa
AU  - Kentaro Saji
AU  - Masaaki Umehara,
AU  - Kotaro Yamada
TI  - Duality on generalized cuspidal edges preserving singular set images and first fundamental forms
JO  - Journal of Singularities
PY  - 2020
SP  - 59
EP  - 91
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22e/
DO  - 10.5427/jsing.2020.22e
ID  - 10_5427_jsing_2020_22e
ER  - 
%0 Journal Article
%A Atsufumi Honda
%A Kosuke Naokawa
%A Kentaro Saji
%A Masaaki Umehara,
%A Kotaro Yamada
%T Duality on generalized cuspidal edges preserving singular set images and first fundamental forms
%J Journal of Singularities
%D 2020
%P 59-91
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22e/
%R 10.5427/jsing.2020.22e
%F 10_5427_jsing_2020_22e
Atsufumi Honda; Kosuke Naokawa; Kentaro Saji; Masaaki Umehara,; Kotaro Yamada. Duality on generalized cuspidal edges preserving singular set images and first fundamental forms. Journal of Singularities, Tome 22 (2020), pp. 59-91. doi: 10.5427/jsing.2020.22e

Cité par Sources :