Finite type ξ-asymptotic lines of plane fields in R^3
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 22 (2020), pp. 17-27
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We prove that a finite type curve is a ξ-asymptotic line (without parabolic points) of a suitable plane field. It is also given an explicit example of a hyperbolic closed finite type ξ-asymptotic line. These results obtained here are generalizations, for plane fields, of the results of V. Arnold.
            
            
            
          
        
      @article{10_5427_jsing_2020_22b,
     author = {Douglas H. da Cruz and Ronaldo A. Garcia},
     title = {Finite type \ensuremath{\xi}-asymptotic lines of plane fields in {R^3}},
     journal = {Journal of Singularities},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {22},
     year = {2020},
     doi = {10.5427/jsing.2020.22b},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22b/}
}
                      
                      
                    TY - JOUR AU - Douglas H. da Cruz AU - Ronaldo A. Garcia TI - Finite type ξ-asymptotic lines of plane fields in R^3 JO - Journal of Singularities PY - 2020 SP - 17 EP - 27 VL - 22 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2020.22b/ DO - 10.5427/jsing.2020.22b ID - 10_5427_jsing_2020_22b ER -
Douglas H. da Cruz; Ronaldo A. Garcia. Finite type ξ-asymptotic lines of plane fields in R^3. Journal of Singularities, Tome 22 (2020), pp. 17-27. doi: 10.5427/jsing.2020.22b
Cité par Sources :