μ-constant deformations of functions on an ICIS
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 19 (2019), pp. 163-176
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We study deformations of holomorphic function germs f:(X,0) -> C, where (X,0) is an ICIS. We present conditions, in terms of the integral closure of the ideal defining the singular set of f|_X, for these deformations to have constant Milnor number, Euler obstruction, and Bruce-Roberts number.
            
            
            
          
        
      @article{10_5427_jsing_2019_19i,
     author = {R. S. Carvalho and B. Or\'efice-Okamoto, and J. N. Tomazella},
     title = {\ensuremath{\mu}-constant deformations of functions on an {ICIS}},
     journal = {Journal of Singularities},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {19},
     year = {2019},
     doi = {10.5427/jsing.2019.19i},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19i/}
}
                      
                      
                    TY - JOUR AU - R. S. Carvalho AU - B. Oréfice-Okamoto, AU - J. N. Tomazella TI - μ-constant deformations of functions on an ICIS JO - Journal of Singularities PY - 2019 SP - 163 EP - 176 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19i/ DO - 10.5427/jsing.2019.19i ID - 10_5427_jsing_2019_19i ER -
%0 Journal Article %A R. S. Carvalho %A B. Oréfice-Okamoto, %A J. N. Tomazella %T μ-constant deformations of functions on an ICIS %J Journal of Singularities %D 2019 %P 163-176 %V 19 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19i/ %R 10.5427/jsing.2019.19i %F 10_5427_jsing_2019_19i
R. S. Carvalho; B. Oréfice-Okamoto,; J. N. Tomazella. μ-constant deformations of functions on an ICIS. Journal of Singularities, Tome 19 (2019), pp. 163-176. doi: 10.5427/jsing.2019.19i
Cité par Sources :