μ-constant deformations of functions on an ICIS
Journal of Singularities, Tome 19 (2019), pp. 163-176

Voir la notice de l'article provenant de la source Journal of Singularities website

We study deformations of holomorphic function germs f:(X,0) -> C, where (X,0) is an ICIS. We present conditions, in terms of the integral closure of the ideal defining the singular set of f|_X, for these deformations to have constant Milnor number, Euler obstruction, and Bruce-Roberts number.
@article{10_5427_jsing_2019_19i,
     author = {R. S. Carvalho and B. Or\'efice-Okamoto, and J. N. Tomazella},
     title = {\ensuremath{\mu}-constant deformations of functions on an {ICIS}},
     journal = {Journal of Singularities},
     pages = {163--176},
     publisher = {mathdoc},
     volume = {19},
     year = {2019},
     doi = {10.5427/jsing.2019.19i},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19i/}
}
TY  - JOUR
AU  - R. S. Carvalho
AU  - B. Oréfice-Okamoto,
AU  - J. N. Tomazella
TI  - μ-constant deformations of functions on an ICIS
JO  - Journal of Singularities
PY  - 2019
SP  - 163
EP  - 176
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19i/
DO  - 10.5427/jsing.2019.19i
ID  - 10_5427_jsing_2019_19i
ER  - 
%0 Journal Article
%A R. S. Carvalho
%A B. Oréfice-Okamoto,
%A J. N. Tomazella
%T μ-constant deformations of functions on an ICIS
%J Journal of Singularities
%D 2019
%P 163-176
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19i/
%R 10.5427/jsing.2019.19i
%F 10_5427_jsing_2019_19i
R. S. Carvalho; B. Oréfice-Okamoto,; J. N. Tomazella. μ-constant deformations of functions on an ICIS. Journal of Singularities, Tome 19 (2019), pp. 163-176. doi: 10.5427/jsing.2019.19i

Cité par Sources :