Differentiable equisingularity of holomorphic foliations
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 19 (2019), pp. 76-96
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We prove that a smooth equivalence between germs of holomorphic foliations at (C^2,0) establishes a bijection between the sets of formal separatrices preserving equisingularity classes. As a consequence, if one of the foliations is of second type, so is the other and they are equisingular.
            
            
            
          
        
      @article{10_5427_jsing_2019_19f,
     author = {Rog\'erio Mol and Rudy Rosas},
     title = {Differentiable equisingularity of holomorphic foliations},
     journal = {Journal of Singularities},
     pages = {76--96},
     publisher = {mathdoc},
     volume = {19},
     year = {2019},
     doi = {10.5427/jsing.2019.19f},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19f/}
}
                      
                      
                    TY - JOUR AU - Rogério Mol AU - Rudy Rosas TI - Differentiable equisingularity of holomorphic foliations JO - Journal of Singularities PY - 2019 SP - 76 EP - 96 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2019.19f/ DO - 10.5427/jsing.2019.19f ID - 10_5427_jsing_2019_19f ER -
Rogério Mol; Rudy Rosas. Differentiable equisingularity of holomorphic foliations. Journal of Singularities, Tome 19 (2019), pp. 76-96. doi: 10.5427/jsing.2019.19f
Cité par Sources :