Schubert Decomposition for Milnor Fibers of the Varieties of Singular Matrices
Journal of Singularities, Tome 18 (2018), pp. 358-396

Voir la notice de l'article provenant de la source Journal of Singularities website

We consider the varieties of singular m x m complex matrices which may be either general, symmetric or skew-symmetric (with m even). For these varieties we have shown in another paper that they had compact "model submanifolds", for the homotopy types of the Milnor fibers which are classical symmetric spaces in the sense of Cartan. In this paper we use these models, combined with results due to a number of authors concerning the Schubert decomposition of Lie groups and symmetric spaces via the Cartan model, together with Iwasawa decomposition, to give cell decompositions of the global Milnor fibers.
DOI : 10.5427/jsing.2018.18s
Classification : :11S90, 32S25, 55R80, :57T15, 14M12, 20G05
@article{10_5427_jsing_2018_18s,
     author = {James Damon},
     title = {Schubert {Decomposition} for {Milnor} {Fibers} of the {Varieties} of {Singular} {Matrices}},
     journal = {Journal of Singularities},
     pages = {358--396},
     publisher = {mathdoc},
     volume = {18},
     year = {2018},
     doi = {10.5427/jsing.2018.18s},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.18s/}
}
TY  - JOUR
AU  - James Damon
TI  - Schubert Decomposition for Milnor Fibers of the Varieties of Singular Matrices
JO  - Journal of Singularities
PY  - 2018
SP  - 358
EP  - 396
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.18s/
DO  - 10.5427/jsing.2018.18s
ID  - 10_5427_jsing_2018_18s
ER  - 
%0 Journal Article
%A James Damon
%T Schubert Decomposition for Milnor Fibers of the Varieties of Singular Matrices
%J Journal of Singularities
%D 2018
%P 358-396
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.18s/
%R 10.5427/jsing.2018.18s
%F 10_5427_jsing_2018_18s
James Damon. Schubert Decomposition for Milnor Fibers of the Varieties of Singular Matrices. Journal of Singularities, Tome 18 (2018), pp. 358-396. doi: 10.5427/jsing.2018.18s

Cité par Sources :