Lacunas and local algebraicity of volume functions
Journal of Singularities, Tome 18 (2018), pp. 350-357

Voir la notice de l'article provenant de la source Journal of Singularities website

The volume cut off by a hyperplane from a bounded body with smooth boundary in R^{2k} never is an algebraic function on the space of hyperplanes: for k=1 it is the famous lemma XXVIII from Newton's Principia. Following an analogy of these volume functions with the solutions of hyperbolic PDE's, we study the local version of the same problem: can such a volume function coincide with an algebraic one at least in some domains of the space of hyperplanes, intersecting the body? We prove some homological and geometric obstructions to this integrability property. Based on these restrictions, we find a family of examples of such "locally integrable" bodies in Euclidean spaces.
DOI : 10.5427/jsing.2018.18r
Classification : 14D05, 44A99, 20F55
@article{10_5427_jsing_2018_18r,
     author = {V. A. Vassiliev},
     title = {Lacunas and local algebraicity of volume functions},
     journal = {Journal of Singularities},
     pages = {350--357},
     publisher = {mathdoc},
     volume = {18},
     year = {2018},
     doi = {10.5427/jsing.2018.18r},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.18r/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Lacunas and local algebraicity of volume functions
JO  - Journal of Singularities
PY  - 2018
SP  - 350
EP  - 357
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.18r/
DO  - 10.5427/jsing.2018.18r
ID  - 10_5427_jsing_2018_18r
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Lacunas and local algebraicity of volume functions
%J Journal of Singularities
%D 2018
%P 350-357
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.18r/
%R 10.5427/jsing.2018.18r
%F 10_5427_jsing_2018_18r
V. A. Vassiliev. Lacunas and local algebraicity of volume functions. Journal of Singularities, Tome 18 (2018), pp. 350-357. doi: 10.5427/jsing.2018.18r

Cité par Sources :