Deforming monomial space curves into set-theoretic complete intersection singularities
Journal of Singularities, Tome 17 (2018), pp. 413-427

Voir la notice de l'article provenant de la source Journal of Singularities website

We deform monomial space curves in order to construct examples of set-theoretical complete intersection space curve singularities. As a by-product we describe an inverse to Herzog's construction of minimal generators of non-complete intersection numerical semigroups with three generators.
DOI : 10.5427/jsing.2018.17s
Classification : 32S30, 14H50, 20M25
@article{10_5427_jsing_2018_17s,
     author = {Michel Granger and Mathias Schulze},
     title = {Deforming monomial space curves into set-theoretic complete intersection singularities},
     journal = {Journal of Singularities},
     pages = {413--427},
     publisher = {mathdoc},
     volume = {17},
     year = {2018},
     doi = {10.5427/jsing.2018.17s},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17s/}
}
TY  - JOUR
AU  - Michel Granger
AU  - Mathias Schulze
TI  - Deforming monomial space curves into set-theoretic complete intersection singularities
JO  - Journal of Singularities
PY  - 2018
SP  - 413
EP  - 427
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17s/
DO  - 10.5427/jsing.2018.17s
ID  - 10_5427_jsing_2018_17s
ER  - 
%0 Journal Article
%A Michel Granger
%A Mathias Schulze
%T Deforming monomial space curves into set-theoretic complete intersection singularities
%J Journal of Singularities
%D 2018
%P 413-427
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17s/
%R 10.5427/jsing.2018.17s
%F 10_5427_jsing_2018_17s
Michel Granger; Mathias Schulze. Deforming monomial space curves into set-theoretic complete intersection singularities. Journal of Singularities, Tome 17 (2018), pp. 413-427. doi: 10.5427/jsing.2018.17s

Cité par Sources :