Deforming monomial space curves into set-theoretic complete intersection singularities
Journal of Singularities, Tome 17 (2018), pp. 413-427
Voir la notice de l'article provenant de la source Journal of Singularities website
We deform monomial space curves in order to construct examples of set-theoretical complete intersection space curve singularities. As a by-product we describe an inverse to Herzog's construction of minimal generators of non-complete intersection numerical semigroups with three generators.
@article{10_5427_jsing_2018_17s,
author = {Michel Granger and Mathias Schulze},
title = {Deforming monomial space curves into set-theoretic complete intersection singularities},
journal = {Journal of Singularities},
pages = {413--427},
publisher = {mathdoc},
volume = {17},
year = {2018},
doi = {10.5427/jsing.2018.17s},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17s/}
}
TY - JOUR AU - Michel Granger AU - Mathias Schulze TI - Deforming monomial space curves into set-theoretic complete intersection singularities JO - Journal of Singularities PY - 2018 SP - 413 EP - 427 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17s/ DO - 10.5427/jsing.2018.17s ID - 10_5427_jsing_2018_17s ER -
%0 Journal Article %A Michel Granger %A Mathias Schulze %T Deforming monomial space curves into set-theoretic complete intersection singularities %J Journal of Singularities %D 2018 %P 413-427 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17s/ %R 10.5427/jsing.2018.17s %F 10_5427_jsing_2018_17s
Michel Granger; Mathias Schulze. Deforming monomial space curves into set-theoretic complete intersection singularities. Journal of Singularities, Tome 17 (2018), pp. 413-427. doi: 10.5427/jsing.2018.17s
Cité par Sources :