Extrinsic geometry and higher order contacts of surfaces in R^5
Journal of Singularities, Tome 17 (2018), pp. 193-213
Voir la notice de l'article provenant de la source Journal of Singularities website
We study the extrinsic geometry of a surface in R^5 in relation to contact theory. We first completely determine the numerical invariants of the second fundamental form and describe the corresponding curvature ellipse. We then introduce and study a new quadratic map closely related to the degenerate directions of the surface, we characterize inflection and umbilic points of the surface in terms of the invariants, and we obtain an intrinsic equation of the asymptotic lines. Finally, we give a simple condition which guarantees the existence of an isometric reduction of codimension of the surface into R^4
@article{10_5427_jsing_2018_17h,
author = {Pierre Bayard and Felipe M\'endez Varela, and Federico S\'anchez-Bringas},
title = {Extrinsic geometry and higher order contacts of surfaces in {R^5}},
journal = {Journal of Singularities},
pages = {193--213},
publisher = {mathdoc},
volume = {17},
year = {2018},
doi = {10.5427/jsing.2018.17h},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17h/}
}
TY - JOUR AU - Pierre Bayard AU - Felipe Méndez Varela, AU - Federico Sánchez-Bringas TI - Extrinsic geometry and higher order contacts of surfaces in R^5 JO - Journal of Singularities PY - 2018 SP - 193 EP - 213 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17h/ DO - 10.5427/jsing.2018.17h ID - 10_5427_jsing_2018_17h ER -
%0 Journal Article %A Pierre Bayard %A Felipe Méndez Varela, %A Federico Sánchez-Bringas %T Extrinsic geometry and higher order contacts of surfaces in R^5 %J Journal of Singularities %D 2018 %P 193-213 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17h/ %R 10.5427/jsing.2018.17h %F 10_5427_jsing_2018_17h
Pierre Bayard; Felipe Méndez Varela,; Federico Sánchez-Bringas. Extrinsic geometry and higher order contacts of surfaces in R^5. Journal of Singularities, Tome 17 (2018), pp. 193-213. doi: 10.5427/jsing.2018.17h
Cité par Sources :