Artin Approximation
Journal of Singularities, Tome 17 (2018), pp. 108-192

Voir la notice de l'article provenant de la source Journal of Singularities website

In 1968, M. Artin proved that any formal power series solution of a system of analytic equations may be approximated by convergent power series solutions. Motivated by this result and a similar result of A. Ploski, he conjectured that this remains true when the ring of convergent power series is replaced by a more general kind of ring.
DOI : 10.5427/jsing.2018.17g
Classification : 00-02, 03C20, 13-02, 13B40, 13J05, 13J15, 14-02, 14B12, 14B25, 32-02, 32B05, 32B10, 11J61, 26E10, 41A58.
@article{10_5427_jsing_2018_17g,
     author = {Guillaume Rond},
     title = {Artin {Approximation}},
     journal = {Journal of Singularities},
     pages = {108--192},
     publisher = {mathdoc},
     volume = {17},
     year = {2018},
     doi = {10.5427/jsing.2018.17g},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17g/}
}
TY  - JOUR
AU  - Guillaume Rond
TI  - Artin Approximation
JO  - Journal of Singularities
PY  - 2018
SP  - 108
EP  - 192
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17g/
DO  - 10.5427/jsing.2018.17g
ID  - 10_5427_jsing_2018_17g
ER  - 
%0 Journal Article
%A Guillaume Rond
%T Artin Approximation
%J Journal of Singularities
%D 2018
%P 108-192
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17g/
%R 10.5427/jsing.2018.17g
%F 10_5427_jsing_2018_17g
Guillaume Rond. Artin Approximation. Journal of Singularities, Tome 17 (2018), pp. 108-192. doi: 10.5427/jsing.2018.17g

Cité par Sources :