Rational cuspidal curves on del-Pezzo surfaces
Journal of Singularities, Tome 17 (2018), pp. 91-107

Voir la notice de l'article provenant de la source Journal of Singularities website

We obtain an explicit formula for the number of rational cuspidal curves of a given degree on a del-Pezzo surface that pass through an appropriate number of generic points of the surface. This enumerative problem is expressed as an Euler class computation on the moduli space of curves. A topological method is employed in computing the degenerate contribution to the Euler class.
DOI : 10.5427/jsing.2018.17f
Classification : 14N35, 14J45
@article{10_5427_jsing_2018_17f,
     author = {Indranil Biswas and Shane D'Mello and Ritwik Mukherjee, and Vamsi P. Pingali},
     title = {Rational cuspidal curves on {del-Pezzo} surfaces},
     journal = {Journal of Singularities},
     pages = {91--107},
     publisher = {mathdoc},
     volume = {17},
     year = {2018},
     doi = {10.5427/jsing.2018.17f},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17f/}
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Shane D'Mello
AU  - Ritwik Mukherjee,
AU  - Vamsi P. Pingali
TI  - Rational cuspidal curves on del-Pezzo surfaces
JO  - Journal of Singularities
PY  - 2018
SP  - 91
EP  - 107
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17f/
DO  - 10.5427/jsing.2018.17f
ID  - 10_5427_jsing_2018_17f
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Shane D'Mello
%A Ritwik Mukherjee,
%A Vamsi P. Pingali
%T Rational cuspidal curves on del-Pezzo surfaces
%J Journal of Singularities
%D 2018
%P 91-107
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17f/
%R 10.5427/jsing.2018.17f
%F 10_5427_jsing_2018_17f
Indranil Biswas; Shane D'Mello; Ritwik Mukherjee,; Vamsi P. Pingali. Rational cuspidal curves on del-Pezzo surfaces. Journal of Singularities, Tome 17 (2018), pp. 91-107. doi: 10.5427/jsing.2018.17f

Cité par Sources :