Rational cuspidal curves on del-Pezzo surfaces
Journal of Singularities, Tome 17 (2018), pp. 91-107
Voir la notice de l'article provenant de la source Journal of Singularities website
We obtain an explicit formula for the number of rational cuspidal curves of a given degree on a del-Pezzo surface that pass through an appropriate number of generic points of the surface. This enumerative problem is expressed as an Euler class computation on the moduli space of curves. A topological method is employed in computing the degenerate contribution to the Euler class.
@article{10_5427_jsing_2018_17f,
author = {Indranil Biswas and Shane D'Mello and Ritwik Mukherjee, and Vamsi P. Pingali},
title = {Rational cuspidal curves on {del-Pezzo} surfaces},
journal = {Journal of Singularities},
pages = {91--107},
publisher = {mathdoc},
volume = {17},
year = {2018},
doi = {10.5427/jsing.2018.17f},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17f/}
}
TY - JOUR AU - Indranil Biswas AU - Shane D'Mello AU - Ritwik Mukherjee, AU - Vamsi P. Pingali TI - Rational cuspidal curves on del-Pezzo surfaces JO - Journal of Singularities PY - 2018 SP - 91 EP - 107 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17f/ DO - 10.5427/jsing.2018.17f ID - 10_5427_jsing_2018_17f ER -
%0 Journal Article %A Indranil Biswas %A Shane D'Mello %A Ritwik Mukherjee, %A Vamsi P. Pingali %T Rational cuspidal curves on del-Pezzo surfaces %J Journal of Singularities %D 2018 %P 91-107 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2018.17f/ %R 10.5427/jsing.2018.17f %F 10_5427_jsing_2018_17f
Indranil Biswas; Shane D'Mello; Ritwik Mukherjee,; Vamsi P. Pingali. Rational cuspidal curves on del-Pezzo surfaces. Journal of Singularities, Tome 17 (2018), pp. 91-107. doi: 10.5427/jsing.2018.17f
Cité par Sources :