Euler characteristic reciprocity for chromatic, flow and order polynomials
Journal of Singularities, Tome 16 (2017), pp. 212-227

Voir la notice de l'article provenant de la source Journal of Singularities website

The Euler characteristic of a semialgebraic set can be considered as a generalization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can define "negative sets" to be the sets with negative Euler characteristics. Applying this idea to posets, we introduce the notion of semialgebraic posets. Using "negative posets", we establish Stanley's reciprocity theorems for order polynomials at the level of Euler characteristics. We also formulate the Euler characteristic reciprocities for chromatic and flow polynomials.
@article{10_5427_jsing_2017_16k,
     author = {Takahiro Hasebe and Toshinori Miyatani, and Masahiko Yoshinaga},
     title = {Euler characteristic reciprocity for chromatic, flow and order polynomials},
     journal = {Journal of Singularities},
     pages = {212--227},
     publisher = {mathdoc},
     volume = {16},
     year = {2017},
     doi = {10.5427/jsing.2017.16k},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16k/}
}
TY  - JOUR
AU  - Takahiro Hasebe
AU  - Toshinori Miyatani,
AU  - Masahiko Yoshinaga
TI  - Euler characteristic reciprocity for chromatic, flow and order polynomials
JO  - Journal of Singularities
PY  - 2017
SP  - 212
EP  - 227
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16k/
DO  - 10.5427/jsing.2017.16k
ID  - 10_5427_jsing_2017_16k
ER  - 
%0 Journal Article
%A Takahiro Hasebe
%A Toshinori Miyatani,
%A Masahiko Yoshinaga
%T Euler characteristic reciprocity for chromatic, flow and order polynomials
%J Journal of Singularities
%D 2017
%P 212-227
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16k/
%R 10.5427/jsing.2017.16k
%F 10_5427_jsing_2017_16k
Takahiro Hasebe; Toshinori Miyatani,; Masahiko Yoshinaga. Euler characteristic reciprocity for chromatic, flow and order polynomials. Journal of Singularities, Tome 16 (2017), pp. 212-227. doi: 10.5427/jsing.2017.16k

Cité par Sources :