Euler characteristic reciprocity for chromatic, flow and order polynomials
Journal of Singularities, Tome 16 (2017), pp. 212-227
Voir la notice de l'article provenant de la source Journal of Singularities website
The Euler characteristic of a semialgebraic set can be considered as a generalization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can define "negative sets" to be the sets with negative Euler characteristics. Applying this idea to posets, we introduce the notion of semialgebraic posets. Using "negative posets", we establish Stanley's reciprocity theorems for order polynomials at the level of Euler characteristics. We also formulate the Euler characteristic reciprocities for chromatic and flow polynomials.
@article{10_5427_jsing_2017_16k,
author = {Takahiro Hasebe and Toshinori Miyatani, and Masahiko Yoshinaga},
title = {Euler characteristic reciprocity for chromatic, flow and order polynomials},
journal = {Journal of Singularities},
pages = {212--227},
publisher = {mathdoc},
volume = {16},
year = {2017},
doi = {10.5427/jsing.2017.16k},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16k/}
}
TY - JOUR AU - Takahiro Hasebe AU - Toshinori Miyatani, AU - Masahiko Yoshinaga TI - Euler characteristic reciprocity for chromatic, flow and order polynomials JO - Journal of Singularities PY - 2017 SP - 212 EP - 227 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16k/ DO - 10.5427/jsing.2017.16k ID - 10_5427_jsing_2017_16k ER -
%0 Journal Article %A Takahiro Hasebe %A Toshinori Miyatani, %A Masahiko Yoshinaga %T Euler characteristic reciprocity for chromatic, flow and order polynomials %J Journal of Singularities %D 2017 %P 212-227 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16k/ %R 10.5427/jsing.2017.16k %F 10_5427_jsing_2017_16k
Takahiro Hasebe; Toshinori Miyatani,; Masahiko Yoshinaga. Euler characteristic reciprocity for chromatic, flow and order polynomials. Journal of Singularities, Tome 16 (2017), pp. 212-227. doi: 10.5427/jsing.2017.16k
Cité par Sources :