Smooth arcs on algebraic varieties
Journal of Singularities, Tome 16 (2017), pp. 130-140
Voir la notice de l'article provenant de la source Journal of Singularities website
Let k be a field and V be a k-variety. We say that a rational arc \gamma in L_\infty(V)(k) is smooth if its formal neighborhood L_\infty(V)_\gamma is an infinite-dimensional formal disk. In this article, we prove that every rational arc \gamma in (L_\infty(V) \ L_\infty(V_{\sing}))(k) is smooth if and only if the formal branch containing \gamma is smooth.
@article{10_5427_jsing_2017_16f,
author = {David Bourqui and Julien Sebag},
title = {Smooth arcs on algebraic varieties},
journal = {Journal of Singularities},
pages = {130--140},
publisher = {mathdoc},
volume = {16},
year = {2017},
doi = {10.5427/jsing.2017.16f},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16f/}
}
David Bourqui; Julien Sebag. Smooth arcs on algebraic varieties. Journal of Singularities, Tome 16 (2017), pp. 130-140. doi: 10.5427/jsing.2017.16f
Cité par Sources :