Flat surfaces along cuspidal edges
Journal of Singularities, Tome 16 (2017), pp. 73-100
Voir la notice de l'article provenant de la source Journal of Singularities website
We consider developable surfaces along the singular set of a cuspidal edge surface which are regarded as flat approximations of the cuspidal edge surface. For the study of singularities of such developable surfaces, we introduce the notion of Darboux frames along cuspidal edges, and introduce invariants. As a by-product, we introduce the notion of higher-order helices which are generalizations of previous notions of generalized helices (i.e., slant helices and clad helices). We use this notion to characterize special cuspidal edges.
@article{10_5427_jsing_2017_16c,
author = {Shyuichi Izumiya and Kentaro Saji, and Nobuko Takeuchi},
title = {Flat surfaces along cuspidal edges},
journal = {Journal of Singularities},
pages = {73--100},
publisher = {mathdoc},
volume = {16},
year = {2017},
doi = {10.5427/jsing.2017.16c},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16c/}
}
TY - JOUR AU - Shyuichi Izumiya AU - Kentaro Saji, AU - Nobuko Takeuchi TI - Flat surfaces along cuspidal edges JO - Journal of Singularities PY - 2017 SP - 73 EP - 100 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2017.16c/ DO - 10.5427/jsing.2017.16c ID - 10_5427_jsing_2017_16c ER -
Shyuichi Izumiya; Kentaro Saji,; Nobuko Takeuchi. Flat surfaces along cuspidal edges. Journal of Singularities, Tome 16 (2017), pp. 73-100. doi: 10.5427/jsing.2017.16c
Cité par Sources :