An Index Formula for Supersymmetric Quantum Mechanics
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 15 (2016), pp. 14-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We derive a localization formula for the refined index of gauged quantum mechanics with four supercharges. Our answer takes the form of a residue integral on the complexified Cartan subalgebra of the gauge group. The formula captures the dependence of the index on Fayet-Iliopoulos parameters and the presence of a generic superpotential. The residue formula provides an efficient method for computing cohomology of quiver moduli spaces. Our result has broad applications to the counting of BPS states in four-dimensional N=2 systems. In that context, the wall-crossing phenomenon appears as discontinuities in the value of the residue integral as the integration contour is varied. We present several examples illustrating the various aspects of the index formula.
            
            
            
          
        
      @article{10_5427_jsing_2016_15b,
     author = {Clay C\'ordova and Shu-Heng Shao},
     title = {An {Index} {Formula} for {Supersymmetric} {Quantum} {Mechanics}},
     journal = {Journal of Singularities},
     pages = {14--35},
     publisher = {mathdoc},
     volume = {15},
     year = {2016},
     doi = {10.5427/jsing.2016.15b},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2016.15b/}
}
                      
                      
                    TY - JOUR AU - Clay Córdova AU - Shu-Heng Shao TI - An Index Formula for Supersymmetric Quantum Mechanics JO - Journal of Singularities PY - 2016 SP - 14 EP - 35 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2016.15b/ DO - 10.5427/jsing.2016.15b ID - 10_5427_jsing_2016_15b ER -
Clay Córdova; Shu-Heng Shao. An Index Formula for Supersymmetric Quantum Mechanics. Journal of Singularities, Tome 15 (2016), pp. 14-35. doi: 10.5427/jsing.2016.15b
Cité par Sources :