Strangely dual orbifold equivalence I
Journal of Singularities, Tome 14 (2016), pp. 34-51

Voir la notice de l'article provenant de la source Journal of Singularities website

In this brief note we prove orbifold equivalence between two potentials described by strangely dual exceptional unimodular singularities of type E_{14} and Q_{10} in two different ways. The matrix factorizations proving the orbifold equivalence give rise to equations whose solutions are permuted by Galois groups which differ for different expressions of the same singularity.
@article{10_5427_jsing_2016_14c,
     author = {Ana Ros Camacho and Rachel Newton},
     title = {Strangely dual orbifold equivalence {I}},
     journal = {Journal of Singularities},
     pages = {34--51},
     publisher = {mathdoc},
     volume = {14},
     year = {2016},
     doi = {10.5427/jsing.2016.14c},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2016.14c/}
}
TY  - JOUR
AU  - Ana Ros Camacho
AU  - Rachel Newton
TI  - Strangely dual orbifold equivalence I
JO  - Journal of Singularities
PY  - 2016
SP  - 34
EP  - 51
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2016.14c/
DO  - 10.5427/jsing.2016.14c
ID  - 10_5427_jsing_2016_14c
ER  - 
%0 Journal Article
%A Ana Ros Camacho
%A Rachel Newton
%T Strangely dual orbifold equivalence I
%J Journal of Singularities
%D 2016
%P 34-51
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2016.14c/
%R 10.5427/jsing.2016.14c
%F 10_5427_jsing_2016_14c
Ana Ros Camacho; Rachel Newton. Strangely dual orbifold equivalence I. Journal of Singularities, Tome 14 (2016), pp. 34-51. doi: 10.5427/jsing.2016.14c

Cité par Sources :