Quantization of Whitney functions and reduction
Journal of Singularities, Tome 13 (2015), pp. 217-228
Voir la notice de l'article provenant de la source Journal of Singularities website
For a possibly singular subset of a regular Poisson manifold we construct a deformation quantization of its algebra of Whitney functions. We then extend the construction of a deformation quantization to the case where the underlying set is a subset of a not necessarily regular Poisson manifold which can be written as the quotient of a regular Poisson manifold on which a compact Lie group acts freely by Poisson maps. Finally, if the quotient Poisson manifold is regular as well, we show a "quantization commutes with reduction" type result. For the proofs, we use methods stemming from both singularity theory and Poisson geometry.
@article{10_5427_jsing_2015_13l,
author = {M. J. Pflaum and H. Posthuma, and X. Tang},
title = {Quantization of {Whitney} functions and reduction},
journal = {Journal of Singularities},
pages = {217--228},
publisher = {mathdoc},
volume = {13},
year = {2015},
doi = {10.5427/jsing.2015.13l},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13l/}
}
TY - JOUR AU - M. J. Pflaum AU - H. Posthuma, AU - X. Tang TI - Quantization of Whitney functions and reduction JO - Journal of Singularities PY - 2015 SP - 217 EP - 228 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13l/ DO - 10.5427/jsing.2015.13l ID - 10_5427_jsing_2015_13l ER -
M. J. Pflaum; H. Posthuma,; X. Tang. Quantization of Whitney functions and reduction. Journal of Singularities, Tome 13 (2015), pp. 217-228. doi: 10.5427/jsing.2015.13l
Cité par Sources :