Quantization of Whitney functions and reduction
Journal of Singularities, Tome 13 (2015), pp. 217-228

Voir la notice de l'article provenant de la source Journal of Singularities website

For a possibly singular subset of a regular Poisson manifold we construct a deformation quantization of its algebra of Whitney functions. We then extend the construction of a deformation quantization to the case where the underlying set is a subset of a not necessarily regular Poisson manifold which can be written as the quotient of a regular Poisson manifold on which a compact Lie group acts freely by Poisson maps. Finally, if the quotient Poisson manifold is regular as well, we show a "quantization commutes with reduction" type result. For the proofs, we use methods stemming from both singularity theory and Poisson geometry.
@article{10_5427_jsing_2015_13l,
     author = {M. J. Pflaum and H. Posthuma, and X. Tang},
     title = {Quantization of {Whitney} functions and reduction},
     journal = {Journal of Singularities},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {13},
     year = {2015},
     doi = {10.5427/jsing.2015.13l},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13l/}
}
TY  - JOUR
AU  - M. J. Pflaum
AU  - H. Posthuma,
AU  - X. Tang
TI  - Quantization of Whitney functions and reduction
JO  - Journal of Singularities
PY  - 2015
SP  - 217
EP  - 228
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13l/
DO  - 10.5427/jsing.2015.13l
ID  - 10_5427_jsing_2015_13l
ER  - 
%0 Journal Article
%A M. J. Pflaum
%A H. Posthuma,
%A X. Tang
%T Quantization of Whitney functions and reduction
%J Journal of Singularities
%D 2015
%P 217-228
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13l/
%R 10.5427/jsing.2015.13l
%F 10_5427_jsing_2015_13l
M. J. Pflaum; H. Posthuma,; X. Tang. Quantization of Whitney functions and reduction. Journal of Singularities, Tome 13 (2015), pp. 217-228. doi: 10.5427/jsing.2015.13l

Cité par Sources :