(SSP) geometry with directional homeomorphisms
Journal of Singularities, Tome 13 (2015), pp. 169-178

Voir la notice de l'article provenant de la source Journal of Singularities website

In a previous paper we discussed several directional properties of sets satisfying the sequence selection property, denoted by (SSP) for short, and developed the (SSP) geometry via bi-Lipschitz transformations. In this paper we introduce the notion of directional homeomorphism and show that we can develop also the (SSP) geometry with directional transformations. For many important results proved earlier for bi-Lipschitz homeomorphisms we describe the analogues for directional homeomorphisms as well.
DOI : 10.5427/jsing.2015.13i
Classification : 14P15, 32B20, 57R45
@article{10_5427_jsing_2015_13i,
     author = {Satoshi Koike and Laurentiu Paunescu},
     title = {(SSP) geometry with directional homeomorphisms},
     journal = {Journal of Singularities},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {13},
     year = {2015},
     doi = {10.5427/jsing.2015.13i},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13i/}
}
TY  - JOUR
AU  - Satoshi Koike
AU  - Laurentiu Paunescu
TI  - (SSP) geometry with directional homeomorphisms
JO  - Journal of Singularities
PY  - 2015
SP  - 169
EP  - 178
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13i/
DO  - 10.5427/jsing.2015.13i
ID  - 10_5427_jsing_2015_13i
ER  - 
%0 Journal Article
%A Satoshi Koike
%A Laurentiu Paunescu
%T (SSP) geometry with directional homeomorphisms
%J Journal of Singularities
%D 2015
%P 169-178
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13i/
%R 10.5427/jsing.2015.13i
%F 10_5427_jsing_2015_13i
Satoshi Koike; Laurentiu Paunescu. (SSP) geometry with directional homeomorphisms. Journal of Singularities, Tome 13 (2015), pp. 169-178. doi: 10.5427/jsing.2015.13i

Cité par Sources :