On stratified Morse theory: from topology to constructible sheaves
Journal of Singularities, Tome 13 (2015), pp. 141-158

Voir la notice de l'article provenant de la source Journal of Singularities website

Stratified Morse theory is the generalization of usual Morse theory to functions on stratified spaces. There are versions for the topological type, homotopy type or (co)homology. A standard reference is the book of Goresky-MacPherson which primarily treats the topological type. Corresponding results about the homotopy type or cohomology may be expected to be consequences but in fact usually one needs some extra information, in particular in the case of cohomology of constructible sheaves, as we will see in this paper.
DOI : 10.5427/jsing.2015.13g
Classification : 32S60, 58K05
@article{10_5427_jsing_2015_13g,
     author = {Helmut A. Hamm},
     title = {On stratified {Morse} theory: from topology to constructible sheaves},
     journal = {Journal of Singularities},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {13},
     year = {2015},
     doi = {10.5427/jsing.2015.13g},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13g/}
}
TY  - JOUR
AU  - Helmut A. Hamm
TI  - On stratified Morse theory: from topology to constructible sheaves
JO  - Journal of Singularities
PY  - 2015
SP  - 141
EP  - 158
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13g/
DO  - 10.5427/jsing.2015.13g
ID  - 10_5427_jsing_2015_13g
ER  - 
%0 Journal Article
%A Helmut A. Hamm
%T On stratified Morse theory: from topology to constructible sheaves
%J Journal of Singularities
%D 2015
%P 141-158
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2015.13g/
%R 10.5427/jsing.2015.13g
%F 10_5427_jsing_2015_13g
Helmut A. Hamm. On stratified Morse theory: from topology to constructible sheaves. Journal of Singularities, Tome 13 (2015), pp. 141-158. doi: 10.5427/jsing.2015.13g

Cité par Sources :