Strong Topological Invariance of the Monodromy Group at Infinity for Quadratic Vector Fields
Journal of Singularities, Tome 9 (2014), pp. 193-202
Voir la notice de l'article provenant de la source Journal of Singularities website
In this work we consider foliations on CP^2 which are generated by quadratic vector fields on C^2. Generically these foliations have isolated singularities and an invariant line at infinity. We say that the monodromy groups at infinity of two such foliations having the same singular points at infinity are strongly analytically equivalent provided there exists a germ of a conformal mapping at zero which conjugates the monodromy maps defined along the same loops on the infinite leaf.
@article{10_5427_jsing_2014_9n,
author = {Valente Ram{\'\i}rez},
title = {Strong {Topological} {Invariance} of the {Monodromy} {Group} at {Infinity} for {Quadratic} {Vector} {Fields}},
journal = {Journal of Singularities},
pages = {193--202},
publisher = {mathdoc},
volume = {9},
year = {2014},
doi = {10.5427/jsing.2014.9n},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9n/}
}
TY - JOUR AU - Valente Ramírez TI - Strong Topological Invariance of the Monodromy Group at Infinity for Quadratic Vector Fields JO - Journal of Singularities PY - 2014 SP - 193 EP - 202 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9n/ DO - 10.5427/jsing.2014.9n ID - 10_5427_jsing_2014_9n ER -
%0 Journal Article %A Valente Ramírez %T Strong Topological Invariance of the Monodromy Group at Infinity for Quadratic Vector Fields %J Journal of Singularities %D 2014 %P 193-202 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9n/ %R 10.5427/jsing.2014.9n %F 10_5427_jsing_2014_9n
Valente Ramírez. Strong Topological Invariance of the Monodromy Group at Infinity for Quadratic Vector Fields. Journal of Singularities, Tome 9 (2014), pp. 193-202. doi: 10.5427/jsing.2014.9n
Cité par Sources :