Riemann-Roch theory on finite sets
Journal of Singularities, Tome 9 (2014), pp. 75-81

Voir la notice de l'article provenant de la source Journal of Singularities website

M. Baker and S. Norine developed a theory of divisors and linear systems on graphs, and proved a Riemann-Roch Theorem for these objects (conceived as integer-valued functions on the vertices). In earlier works, we generalized these concepts to real-valued functions, and proved a corresponding Riemann-Roch Theorem in that setting, showing that it implied the Baker-Norine result. In this article we prove a Riemann-Roch Theorem in a more general combinatorial setting that is not necessarily driven by the existence of a graph.
@article{10_5427_jsing_2014_9g,
     author = {Rodney James and Rick Miranda},
     title = {Riemann-Roch theory on finite sets},
     journal = {Journal of Singularities},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {9},
     year = {2014},
     doi = {10.5427/jsing.2014.9g},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9g/}
}
TY  - JOUR
AU  - Rodney James
AU  - Rick Miranda
TI  - Riemann-Roch theory on finite sets
JO  - Journal of Singularities
PY  - 2014
SP  - 75
EP  - 81
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9g/
DO  - 10.5427/jsing.2014.9g
ID  - 10_5427_jsing_2014_9g
ER  - 
%0 Journal Article
%A Rodney James
%A Rick Miranda
%T Riemann-Roch theory on finite sets
%J Journal of Singularities
%D 2014
%P 75-81
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9g/
%R 10.5427/jsing.2014.9g
%F 10_5427_jsing_2014_9g
Rodney James; Rick Miranda. Riemann-Roch theory on finite sets. Journal of Singularities, Tome 9 (2014), pp. 75-81. doi: 10.5427/jsing.2014.9g

Cité par Sources :