Varieties of complexes and foliations
Journal of Singularities, Tome 9 (2014), pp. 56-67

Voir la notice de l'article provenant de la source Journal of Singularities website

Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).
DOI : 10.5427/jsing.2014.9e
Classification : 14M99, 14N99, 37F75
@article{10_5427_jsing_2014_9e,
     author = {Fernando Cukierman},
     title = {Varieties of complexes and foliations},
     journal = {Journal of Singularities},
     pages = {56--67},
     publisher = {mathdoc},
     volume = {9},
     year = {2014},
     doi = {10.5427/jsing.2014.9e},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9e/}
}
TY  - JOUR
AU  - Fernando Cukierman
TI  - Varieties of complexes and foliations
JO  - Journal of Singularities
PY  - 2014
SP  - 56
EP  - 67
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9e/
DO  - 10.5427/jsing.2014.9e
ID  - 10_5427_jsing_2014_9e
ER  - 
%0 Journal Article
%A Fernando Cukierman
%T Varieties of complexes and foliations
%J Journal of Singularities
%D 2014
%P 56-67
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.9e/
%R 10.5427/jsing.2014.9e
%F 10_5427_jsing_2014_9e
Fernando Cukierman. Varieties of complexes and foliations. Journal of Singularities, Tome 9 (2014), pp. 56-67. doi: 10.5427/jsing.2014.9e

Cité par Sources :