The Geometry of Double Fold Maps
Journal of Singularities, Tome 10 (2014), pp. 250-263

Voir la notice de l'article provenant de la source Journal of Singularities website

We study the geometry of a family of singular map germs (C^2,0)->(C^3,0) called double folds. As an analogy to David Mond's fold map germs of the form f(x,y)= (x, y^2, f_3(x,y)), f_3 in O_2, double folds are of the form f(x,y)=(x^2, y^2, f_3(x,y)). This family provides lots of interesting germs, such as finitely determined homogeneous corank 2 germs. We also introduce analytic invariants adapted to this family.
@article{10_5427_jsing_2014_10q,
     author = {G. Pe\~nafort-Sanchis},
     title = {The {Geometry} of {Double} {Fold} {Maps}},
     journal = {Journal of Singularities},
     pages = {250--263},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     doi = {10.5427/jsing.2014.10q},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10q/}
}
TY  - JOUR
AU  - G. Peñafort-Sanchis
TI  - The Geometry of Double Fold Maps
JO  - Journal of Singularities
PY  - 2014
SP  - 250
EP  - 263
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10q/
DO  - 10.5427/jsing.2014.10q
ID  - 10_5427_jsing_2014_10q
ER  - 
%0 Journal Article
%A G. Peñafort-Sanchis
%T The Geometry of Double Fold Maps
%J Journal of Singularities
%D 2014
%P 250-263
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10q/
%R 10.5427/jsing.2014.10q
%F 10_5427_jsing_2014_10q
G. Peñafort-Sanchis. The Geometry of Double Fold Maps. Journal of Singularities, Tome 10 (2014), pp. 250-263. doi: 10.5427/jsing.2014.10q

Cité par Sources :