Abelian singularities of holomorphic Lie-foliations
Journal of Singularities, Tome 10 (2014), pp. 191-199
Voir la notice de l'article provenant de la source Journal of Singularities website
We study holomorphic foliations with generic singularities and Lie group transverse structure outside of some invariant codimension one analytic subset. We introduce the concept of abelian singularity and prove that, for this type of singularities, the foliation is logarithmic. The Lie transverse structure is then used to extend the local (logarithmic) normal form from a neighborhood of the singularity, to the whole manifold.
@article{10_5427_jsing_2014_10m,
author = {Albet\~a Mafra and Bruno Sc\'ardua},
title = {Abelian singularities of holomorphic {Lie-foliations}},
journal = {Journal of Singularities},
pages = {191--199},
publisher = {mathdoc},
volume = {10},
year = {2014},
doi = {10.5427/jsing.2014.10m},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10m/}
}
TY - JOUR AU - Albetã Mafra AU - Bruno Scárdua TI - Abelian singularities of holomorphic Lie-foliations JO - Journal of Singularities PY - 2014 SP - 191 EP - 199 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10m/ DO - 10.5427/jsing.2014.10m ID - 10_5427_jsing_2014_10m ER -
Albetã Mafra; Bruno Scárdua. Abelian singularities of holomorphic Lie-foliations. Journal of Singularities, Tome 10 (2014), pp. 191-199. doi: 10.5427/jsing.2014.10m
Cité par Sources :