Links of singularities up to regular homotopy
Journal of Singularities, Tome 10 (2014), pp. 174-182
Voir la notice de l'article provenant de la source Journal of Singularities website
We classify links of the singularities x^2 + y^2 + z^2 + v^{2d} = 0 in (C^4, 0) up to regular homotopies precomposed with diffeomorphisms of S^3 x S^2. Let us denote the link of this singularity by L_d and denote by i_d the inclusion of L_d into S^7. We show that for arbitrary diffeomorphisms \varphi_d:S^3 x S^2 -> L_d the compositions i_d with \varphi_d are image regularly homotopic for two different values of d, d = d_1 and d = d_2, if and only if d_1 is congruent to d_2 mod 2.
@article{10_5427_jsing_2014_10k,
author = {A. Katanaga and A. N\'emethi, and A. Sz\'{u}cs},
title = {Links of singularities up to regular homotopy},
journal = {Journal of Singularities},
pages = {174--182},
publisher = {mathdoc},
volume = {10},
year = {2014},
doi = {10.5427/jsing.2014.10k},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10k/}
}
TY - JOUR AU - A. Katanaga AU - A. Némethi, AU - A. Szűcs TI - Links of singularities up to regular homotopy JO - Journal of Singularities PY - 2014 SP - 174 EP - 182 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10k/ DO - 10.5427/jsing.2014.10k ID - 10_5427_jsing_2014_10k ER -
A. Katanaga; A. Némethi,; A. Szűcs. Links of singularities up to regular homotopy. Journal of Singularities, Tome 10 (2014), pp. 174-182. doi: 10.5427/jsing.2014.10k
Cité par Sources :