Links of singularities up to regular homotopy
Journal of Singularities, Tome 10 (2014), pp. 174-182

Voir la notice de l'article provenant de la source Journal of Singularities website

We classify links of the singularities x^2 + y^2 + z^2 + v^{2d} = 0 in (C^4, 0) up to regular homotopies precomposed with diffeomorphisms of S^3 x S^2. Let us denote the link of this singularity by L_d and denote by i_d the inclusion of L_d into S^7. We show that for arbitrary diffeomorphisms \varphi_d:S^3 x S^2 -> L_d the compositions i_d with \varphi_d are image regularly homotopic for two different values of d, d = d_1 and d = d_2, if and only if d_1 is congruent to d_2 mod 2.
@article{10_5427_jsing_2014_10k,
     author = {A. Katanaga and A. N\'emethi, and A. Sz\'{u}cs},
     title = {Links of singularities up to regular homotopy},
     journal = {Journal of Singularities},
     pages = {174--182},
     publisher = {mathdoc},
     volume = {10},
     year = {2014},
     doi = {10.5427/jsing.2014.10k},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10k/}
}
TY  - JOUR
AU  - A. Katanaga
AU  - A. Némethi,
AU  - A. Szűcs
TI  - Links of singularities up to regular homotopy
JO  - Journal of Singularities
PY  - 2014
SP  - 174
EP  - 182
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10k/
DO  - 10.5427/jsing.2014.10k
ID  - 10_5427_jsing_2014_10k
ER  - 
%0 Journal Article
%A A. Katanaga
%A A. Némethi,
%A A. Szűcs
%T Links of singularities up to regular homotopy
%J Journal of Singularities
%D 2014
%P 174-182
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2014.10k/
%R 10.5427/jsing.2014.10k
%F 10_5427_jsing_2014_10k
A. Katanaga; A. Némethi,; A. Szűcs. Links of singularities up to regular homotopy. Journal of Singularities, Tome 10 (2014), pp. 174-182. doi: 10.5427/jsing.2014.10k

Cité par Sources :