Topological Invariants and Moduli of Gorenstein Singularities
    
    
  
  
  
      
      
      
        
Journal of Singularities, Tome 7 (2013), pp. 61-87
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Journal of Singularities website
            
              We describe all connected components of the space of hyperbolic Gorenstein quasi-homogeneous surface singularities. We prove that any connected component is homeomorphic to a quotient of R^d by a discrete group.
            
            
            
          
        
      @article{10_5427_jsing_2013_7e,
     author = {Sergey Natanzon and Anna Pratoussevitch},
     title = {Topological {Invariants} and {Moduli} of {Gorenstein} {Singularities}},
     journal = {Journal of Singularities},
     pages = {61--87},
     publisher = {mathdoc},
     volume = {7},
     year = {2013},
     doi = {10.5427/jsing.2013.7e},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2013.7e/}
}
                      
                      
                    TY - JOUR AU - Sergey Natanzon AU - Anna Pratoussevitch TI - Topological Invariants and Moduli of Gorenstein Singularities JO - Journal of Singularities PY - 2013 SP - 61 EP - 87 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2013.7e/ DO - 10.5427/jsing.2013.7e ID - 10_5427_jsing_2013_7e ER -
Sergey Natanzon; Anna Pratoussevitch. Topological Invariants and Moduli of Gorenstein Singularities. Journal of Singularities, Tome 7 (2013), pp. 61-87. doi: 10.5427/jsing.2013.7e
Cité par Sources :