Singularities of Abel-Jacobi maps and geometry of dissolving vortices
Journal of Singularities, Tome 6 (2012), pp. 146-157
Voir la notice de l'article provenant de la source Journal of Singularities website
Gauged vortices are configurations of fields for certain gauge theories in fibre bundles over a surface Σ. Their moduli spaces support natural L^2-metrics, which are Kähler, and whose geodesic flow approximates vortex scattering at low speed. This paper focuses on vortices in line bundles, for which the moduli spaces are modeled on the spaces Σ^(k) of effective divisors on Σ with a fixed degree k; we describe the behaviour of the underlying L^2-metrics in a "dissolving limit" where the L^2-geometry simplifies. In such limit, the metrics degenerate precisely at the singular locus of the Abel-Jacobi map AJ of Σ at degree k, and their geometry can be understood in terms of the variety W_k = AJ(Σ^(k)) inside the Jacobian of Σ. Some intuition about the behaviour of the geodesic flow close to a singularity is provided through the study of the simplest example (resolution of a double point on a surface), corresponding to two dissolving vortices moving on a hyperelliptic curve of genus three.
@article{10_5427_jsing_2012_6l,
author = {Nuno M. Rom\~ao},
title = {Singularities of {Abel-Jacobi} maps and geometry of dissolving vortices},
journal = {Journal of Singularities},
pages = {146--157},
publisher = {mathdoc},
volume = {6},
year = {2012},
doi = {10.5427/jsing.2012.6l},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.6l/}
}
TY - JOUR AU - Nuno M. Romão TI - Singularities of Abel-Jacobi maps and geometry of dissolving vortices JO - Journal of Singularities PY - 2012 SP - 146 EP - 157 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.6l/ DO - 10.5427/jsing.2012.6l ID - 10_5427_jsing_2012_6l ER -
Nuno M. Romão. Singularities of Abel-Jacobi maps and geometry of dissolving vortices. Journal of Singularities, Tome 6 (2012), pp. 146-157. doi: 10.5427/jsing.2012.6l
Cité par Sources :