Motivic bivariant characteristic classes and related topics
Journal of Singularities, Tome 5 (2012), pp. 124-152

Voir la notice de l'article provenant de la source Journal of Singularities website

We have recently constructed a bivariant analogue of the motivic Hirzebruch classes. A key idea is the construction of a suitable universal bivariant theory in the algebraic-geometric (or compact complex analytic) context, together with a corresponding "bivariant blow-up relation" generalizing Bittner's presentation of the Grothendieck group of varieties. Before we already introduced a corresponding universal "oriented" bivariant theory as an intermediate step on the way to a bivariant analogue of Levine-Morel's algebraic cobordism. Switching to the differential topological context of smooth manifolds, we similarly get a new geometric bivariant bordism theory based on the notion of a "fiberwise bordism". In this paper we make a survey on these theories.
@article{10_5427_jsing_2012_5j,
     author = {J\"org Sch\"urmann and Shoji Yokura},
     title = {Motivic bivariant characteristic classes and related topics},
     journal = {Journal of Singularities},
     pages = {124--152},
     publisher = {mathdoc},
     volume = {5},
     year = {2012},
     doi = {10.5427/jsing.2012.5j},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5j/}
}
TY  - JOUR
AU  - Jörg Schürmann
AU  - Shoji Yokura
TI  - Motivic bivariant characteristic classes and related topics
JO  - Journal of Singularities
PY  - 2012
SP  - 124
EP  - 152
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5j/
DO  - 10.5427/jsing.2012.5j
ID  - 10_5427_jsing_2012_5j
ER  - 
%0 Journal Article
%A Jörg Schürmann
%A Shoji Yokura
%T Motivic bivariant characteristic classes and related topics
%J Journal of Singularities
%D 2012
%P 124-152
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5j/
%R 10.5427/jsing.2012.5j
%F 10_5427_jsing_2012_5j
Jörg Schürmann; Shoji Yokura. Motivic bivariant characteristic classes and related topics. Journal of Singularities, Tome 5 (2012), pp. 124-152. doi: 10.5427/jsing.2012.5j

Cité par Sources :