Motivic bivariant characteristic classes and related topics
Journal of Singularities, Tome 5 (2012), pp. 124-152
Voir la notice de l'article provenant de la source Journal of Singularities website
We have recently constructed a bivariant analogue of the motivic Hirzebruch classes. A key idea is the construction of a suitable universal bivariant theory in the algebraic-geometric (or compact complex analytic) context, together with a corresponding "bivariant blow-up relation" generalizing Bittner's presentation of the Grothendieck group of varieties. Before we already introduced a corresponding universal "oriented" bivariant theory as an intermediate step on the way to a bivariant analogue of Levine-Morel's algebraic cobordism. Switching to the differential topological context of smooth manifolds, we similarly get a new geometric bivariant bordism theory based on the notion of a "fiberwise bordism". In this paper we make a survey on these theories.
@article{10_5427_jsing_2012_5j,
author = {J\"org Sch\"urmann and Shoji Yokura},
title = {Motivic bivariant characteristic classes and related topics},
journal = {Journal of Singularities},
pages = {124--152},
publisher = {mathdoc},
volume = {5},
year = {2012},
doi = {10.5427/jsing.2012.5j},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5j/}
}
TY - JOUR AU - Jörg Schürmann AU - Shoji Yokura TI - Motivic bivariant characteristic classes and related topics JO - Journal of Singularities PY - 2012 SP - 124 EP - 152 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5j/ DO - 10.5427/jsing.2012.5j ID - 10_5427_jsing_2012_5j ER -
Jörg Schürmann; Shoji Yokura. Motivic bivariant characteristic classes and related topics. Journal of Singularities, Tome 5 (2012), pp. 124-152. doi: 10.5427/jsing.2012.5j
Cité par Sources :