Chern Classes of Logarithmic Vector Fields
Journal of Singularities, Tome 5 (2012), pp. 109-114

Voir la notice de l'article provenant de la source Journal of Singularities website

Let X be a nonsingular complex variety and D a reduced effective divisor in X. In this paper we study the conditions under which the formula c_{SM}(1_U)=c(Der_X(-log D))\cap [X] is true. We prove that this formula is equivalent to a Riemann-Roch type of formula. As a corollary, we show that over a surface, the formula is true if and only if the Milnor number equals the Tjurina number at each singularity of D. We also show the Rimann-Roch type of formula is true if the Jacobian scheme of D is nonsingular or a complete intersection.
@article{10_5427_jsing_2012_5h,
     author = {Xia Liao},
     title = {Chern {Classes} of {Logarithmic} {Vector} {Fields}},
     journal = {Journal of Singularities},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {5},
     year = {2012},
     doi = {10.5427/jsing.2012.5h},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5h/}
}
TY  - JOUR
AU  - Xia Liao
TI  - Chern Classes of Logarithmic Vector Fields
JO  - Journal of Singularities
PY  - 2012
SP  - 109
EP  - 114
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5h/
DO  - 10.5427/jsing.2012.5h
ID  - 10_5427_jsing_2012_5h
ER  - 
%0 Journal Article
%A Xia Liao
%T Chern Classes of Logarithmic Vector Fields
%J Journal of Singularities
%D 2012
%P 109-114
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.5h/
%R 10.5427/jsing.2012.5h
%F 10_5427_jsing_2012_5h
Xia Liao. Chern Classes of Logarithmic Vector Fields. Journal of Singularities, Tome 5 (2012), pp. 109-114. doi: 10.5427/jsing.2012.5h

Cité par Sources :