On a Newton filtration for functions on a curve singularity
Journal of Singularities, Tome 4 (2012), pp. 180-187

Voir la notice de l'article provenant de la source Journal of Singularities website

In a previous paper, there was defined a multi-index filtration on the ring of functions on a hypersurface singularity corresponding to its Newton diagram generalizing (for a curve singularity) the divisorial one. Its Poincaré series was computed for plane curve singularities non-degenerate with respect to their Newton diagrams. Here we use another technique to compute the Poincaré series for plane curve singularities without the assumption that they are non-degenerate with respect to their Newton diagrams. We show that the Poincaré series only depends on the Newton diagram and not on the defining equation.
DOI : 10.5427/jsing.2012.4k
Classification : 32S05, 14M25, 16W70
@article{10_5427_jsing_2012_4k,
     author = {W. Ebeling and S. M. Gusein-Zade},
     title = {On a {Newton} filtration for functions on a curve singularity},
     journal = {Journal of Singularities},
     pages = {180--187},
     publisher = {mathdoc},
     volume = {4},
     year = {2012},
     doi = {10.5427/jsing.2012.4k},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4k/}
}
TY  - JOUR
AU  - W. Ebeling
AU  - S. M. Gusein-Zade
TI  - On a Newton filtration for functions on a curve singularity
JO  - Journal of Singularities
PY  - 2012
SP  - 180
EP  - 187
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4k/
DO  - 10.5427/jsing.2012.4k
ID  - 10_5427_jsing_2012_4k
ER  - 
%0 Journal Article
%A W. Ebeling
%A S. M. Gusein-Zade
%T On a Newton filtration for functions on a curve singularity
%J Journal of Singularities
%D 2012
%P 180-187
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4k/
%R 10.5427/jsing.2012.4k
%F 10_5427_jsing_2012_4k
W. Ebeling; S. M. Gusein-Zade. On a Newton filtration for functions on a curve singularity. Journal of Singularities, Tome 4 (2012), pp. 180-187. doi: 10.5427/jsing.2012.4k

Cité par Sources :