Picard groups of normal surfaces
Journal of Singularities, Tome 4 (2012), pp. 154-170

Voir la notice de l'article provenant de la source Journal of Singularities website

We study the fixed singularities imposed on members of a linear system of surfaces in P^3_C by its base locus Z. For a 1-dimensional subscheme Z contained in P^3 with finitely many points p_i of embedding dimension three and d >> 0, we determine the nature of the singularities p_i in S for general S in |H^0 (P^3, I_Z (d))| and give a method to compute the kernel of the restriction map from Cl S to Cl O_{S,p_i}. One tool developed is an algorithm to identify the type of an A_n singularity via its local equation. We illustrate the method for representative Z and use Noether-Lefschetz theory to compute Pic S.
DOI : 10.5427/jsing.2012.4i
Classification : 14B07, 14H10, 14H50
@article{10_5427_jsing_2012_4i,
     author = {John Brevik and Scott Nollet},
     title = {Picard groups of normal surfaces},
     journal = {Journal of Singularities},
     pages = {154--170},
     publisher = {mathdoc},
     volume = {4},
     year = {2012},
     doi = {10.5427/jsing.2012.4i},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4i/}
}
TY  - JOUR
AU  - John Brevik
AU  - Scott Nollet
TI  - Picard groups of normal surfaces
JO  - Journal of Singularities
PY  - 2012
SP  - 154
EP  - 170
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4i/
DO  - 10.5427/jsing.2012.4i
ID  - 10_5427_jsing_2012_4i
ER  - 
%0 Journal Article
%A John Brevik
%A Scott Nollet
%T Picard groups of normal surfaces
%J Journal of Singularities
%D 2012
%P 154-170
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4i/
%R 10.5427/jsing.2012.4i
%F 10_5427_jsing_2012_4i
John Brevik; Scott Nollet. Picard groups of normal surfaces. Journal of Singularities, Tome 4 (2012), pp. 154-170. doi: 10.5427/jsing.2012.4i

Cité par Sources :