On the classification of quasihomogeneous singularities
Journal of Singularities, Tome 4 (2012), pp. 131-153
Voir la notice de l'article provenant de la source Journal of Singularities website
The motivations for this paper are computer calculations of complete lists of weight systems of quasihomogeneous polynomials with isolated singularity at 0 up to rather large Milnor numbers. We review combinatorial characterizations of such weight systems for any number of variables. This leads to certain types and graphs of such weight systems. Using them, we prove an upper bound for the common denominator (and the order of the monodromy) by the Milnor number, and we show surprising consequences if the Milnor number is a prime number.
@article{10_5427_jsing_2012_4h,
author = {Claus Hertling and Ralf Kurbel},
title = {On the classification of quasihomogeneous singularities},
journal = {Journal of Singularities},
pages = {131--153},
publisher = {mathdoc},
volume = {4},
year = {2012},
doi = {10.5427/jsing.2012.4h},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4h/}
}
TY - JOUR AU - Claus Hertling AU - Ralf Kurbel TI - On the classification of quasihomogeneous singularities JO - Journal of Singularities PY - 2012 SP - 131 EP - 153 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4h/ DO - 10.5427/jsing.2012.4h ID - 10_5427_jsing_2012_4h ER -
Claus Hertling; Ralf Kurbel. On the classification of quasihomogeneous singularities. Journal of Singularities, Tome 4 (2012), pp. 131-153. doi: 10.5427/jsing.2012.4h
Cité par Sources :