Inflection Points of Real and Tropical Plane Curves
Journal of Singularities, Tome 4 (2012), pp. 74-103

Voir la notice de l'article provenant de la source Journal of Singularities website

We prove that Viro's patchworking produces real algebraic curves with the maximal number of real inflection points. In particular this implies that maximally inflected real algebraic $M$-curves realize many isotopy types. The strategy we adopt in this paper is tropical: we study tropical limits of inflection points of classical plane algebraic curves. The main tropical tool we use to understand these tropical inflection points are tropical modifications.
@article{10_5427_jsing_2012_4e,
     author = {Erwan Brugall\'e and Lucia L\'opez de Medrano},
     title = {Inflection {Points} of {Real} and {Tropical} {Plane} {Curves}},
     journal = {Journal of Singularities},
     pages = {74--103},
     publisher = {mathdoc},
     volume = {4},
     year = {2012},
     doi = {10.5427/jsing.2012.4e},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4e/}
}
TY  - JOUR
AU  - Erwan Brugallé
AU  - Lucia López de Medrano
TI  - Inflection Points of Real and Tropical Plane Curves
JO  - Journal of Singularities
PY  - 2012
SP  - 74
EP  - 103
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4e/
DO  - 10.5427/jsing.2012.4e
ID  - 10_5427_jsing_2012_4e
ER  - 
%0 Journal Article
%A Erwan Brugallé
%A Lucia López de Medrano
%T Inflection Points of Real and Tropical Plane Curves
%J Journal of Singularities
%D 2012
%P 74-103
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4e/
%R 10.5427/jsing.2012.4e
%F 10_5427_jsing_2012_4e
Erwan Brugallé; Lucia López de Medrano. Inflection Points of Real and Tropical Plane Curves. Journal of Singularities, Tome 4 (2012), pp. 74-103. doi: 10.5427/jsing.2012.4e

Cité par Sources :