Inflection Points of Real and Tropical Plane Curves
Journal of Singularities, Tome 4 (2012), pp. 74-103
Voir la notice de l'article provenant de la source Journal of Singularities website
We prove that Viro's patchworking produces real algebraic curves with the maximal number of real inflection points. In particular this implies that maximally inflected real algebraic $M$-curves realize many isotopy types. The strategy we adopt in this paper is tropical: we study tropical limits of inflection points of classical plane algebraic curves. The main tropical tool we use to understand these tropical inflection points are tropical modifications.
@article{10_5427_jsing_2012_4e,
author = {Erwan Brugall\'e and Lucia L\'opez de Medrano},
title = {Inflection {Points} of {Real} and {Tropical} {Plane} {Curves}},
journal = {Journal of Singularities},
pages = {74--103},
publisher = {mathdoc},
volume = {4},
year = {2012},
doi = {10.5427/jsing.2012.4e},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4e/}
}
TY - JOUR AU - Erwan Brugallé AU - Lucia López de Medrano TI - Inflection Points of Real and Tropical Plane Curves JO - Journal of Singularities PY - 2012 SP - 74 EP - 103 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2012.4e/ DO - 10.5427/jsing.2012.4e ID - 10_5427_jsing_2012_4e ER -
Erwan Brugallé; Lucia López de Medrano. Inflection Points of Real and Tropical Plane Curves. Journal of Singularities, Tome 4 (2012), pp. 74-103. doi: 10.5427/jsing.2012.4e
Cité par Sources :