Apparent contours of stable maps into the sphere
Journal of Singularities, Tome 3 (2011), pp. 113-125
Voir la notice de l'article provenant de la source Journal of Singularities website
For a stable map φ:M → S^2 of a closed and connected surface into the sphere, let c(φ) and n(φ) denote the numbers of cusps and nodes respectively. In this paper, for each integer i ≥ 1, in the given homotopy class with i fold curve components, we will determine the minimal number c +n.
@article{10_5427_jsing_2011_3g,
author = {Taishi Fukuda and Takahiro Yamamoto},
title = {Apparent contours of stable maps into the sphere},
journal = {Journal of Singularities},
pages = {113--125},
publisher = {mathdoc},
volume = {3},
year = {2011},
doi = {10.5427/jsing.2011.3g},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2011.3g/}
}
TY - JOUR AU - Taishi Fukuda AU - Takahiro Yamamoto TI - Apparent contours of stable maps into the sphere JO - Journal of Singularities PY - 2011 SP - 113 EP - 125 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2011.3g/ DO - 10.5427/jsing.2011.3g ID - 10_5427_jsing_2011_3g ER -
Taishi Fukuda; Takahiro Yamamoto. Apparent contours of stable maps into the sphere. Journal of Singularities, Tome 3 (2011), pp. 113-125. doi: 10.5427/jsing.2011.3g
Cité par Sources :