Combinatorial computation of the motivic Poincaré series
Journal of Singularities, Tome 3 (2011), pp. 48-82

Voir la notice de l'article provenant de la source Journal of Singularities website

We give an explicit algorithm computing the motivic generalization of the Poincaré series of a plane curve singularity introduced by A. Campillo, F. Delgado and S. Gusein-Zade. It is done in terms of the embedded resolution. The result is a rational function depending of the parameter q, at q=1 it coincides with the Alexander polynomial of the corresponding link. For irreducible curves we relate this invariant to the Heegaard-Floer knot homology constructed by P. Ozsváth and Z. Szabó. Many explicit examples are considered.
@article{10_5427_jsing_2011_3d,
     author = {Evgeny Gorsky},
     title = {Combinatorial computation of the motivic {Poincar\'e} series},
     journal = {Journal of Singularities},
     pages = {48--82},
     publisher = {mathdoc},
     volume = {3},
     year = {2011},
     doi = {10.5427/jsing.2011.3d},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2011.3d/}
}
TY  - JOUR
AU  - Evgeny Gorsky
TI  - Combinatorial computation of the motivic Poincaré series
JO  - Journal of Singularities
PY  - 2011
SP  - 48
EP  - 82
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2011.3d/
DO  - 10.5427/jsing.2011.3d
ID  - 10_5427_jsing_2011_3d
ER  - 
%0 Journal Article
%A Evgeny Gorsky
%T Combinatorial computation of the motivic Poincaré series
%J Journal of Singularities
%D 2011
%P 48-82
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2011.3d/
%R 10.5427/jsing.2011.3d
%F 10_5427_jsing_2011_3d
Evgeny Gorsky. Combinatorial computation of the motivic Poincaré series. Journal of Singularities, Tome 3 (2011), pp. 48-82. doi: 10.5427/jsing.2011.3d

Cité par Sources :