Monodromy of plane curves and quasi-ordinary surfaces
Journal of Singularities, Tome 1 (2010), pp. 146-168

Voir la notice de l'article provenant de la source Journal of Singularities website

We establish an explicit recursive formula for the vertical monodromies of an irreducible quasi-ordinary surface in C^3. The calculation employs a local description of the singularity at the generic point of each singular component in terms of a "truncation" and a "derived" surface. These objects are also used to retrieve a formula for the (classical) horizontal monodromy in recursive terms.
DOI : 10.5427/jsing.2010.1j
Classification :
@article{10_5427_jsing_2010_1j,
     author = {G. Kennedy and L. McEwan},
     title = {Monodromy of plane curves and quasi-ordinary surfaces},
     journal = {Journal of Singularities},
     pages = {146--168},
     publisher = {mathdoc},
     volume = {1},
     year = {2010},
     doi = {10.5427/jsing.2010.1j},
     url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2010.1j/}
}
TY  - JOUR
AU  - G. Kennedy
AU  - L. McEwan
TI  - Monodromy of plane curves and quasi-ordinary surfaces
JO  - Journal of Singularities
PY  - 2010
SP  - 146
EP  - 168
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2010.1j/
DO  - 10.5427/jsing.2010.1j
ID  - 10_5427_jsing_2010_1j
ER  - 
%0 Journal Article
%A G. Kennedy
%A L. McEwan
%T Monodromy of plane curves and quasi-ordinary surfaces
%J Journal of Singularities
%D 2010
%P 146-168
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5427/jsing.2010.1j/
%R 10.5427/jsing.2010.1j
%F 10_5427_jsing_2010_1j
G. Kennedy; L. McEwan. Monodromy of plane curves and quasi-ordinary surfaces. Journal of Singularities, Tome 1 (2010), pp. 146-168. doi: 10.5427/jsing.2010.1j

Cité par Sources :