Monodromy of plane curves and quasi-ordinary surfaces
Journal of Singularities, Tome 1 (2010), pp. 146-168
Voir la notice de l'article provenant de la source Journal of Singularities website
We establish an explicit recursive formula for the vertical monodromies of an irreducible quasi-ordinary surface in C^3. The calculation employs a local description of the singularity at the generic point of each singular component in terms of a "truncation" and a "derived" surface. These objects are also used to retrieve a formula for the (classical) horizontal monodromy in recursive terms.
@article{10_5427_jsing_2010_1j,
author = {G. Kennedy and L. McEwan},
title = {Monodromy of plane curves and quasi-ordinary surfaces},
journal = {Journal of Singularities},
pages = {146--168},
publisher = {mathdoc},
volume = {1},
year = {2010},
doi = {10.5427/jsing.2010.1j},
url = {http://geodesic.mathdoc.fr/articles/10.5427/jsing.2010.1j/}
}
TY - JOUR AU - G. Kennedy AU - L. McEwan TI - Monodromy of plane curves and quasi-ordinary surfaces JO - Journal of Singularities PY - 2010 SP - 146 EP - 168 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5427/jsing.2010.1j/ DO - 10.5427/jsing.2010.1j ID - 10_5427_jsing_2010_1j ER -
G. Kennedy; L. McEwan. Monodromy of plane curves and quasi-ordinary surfaces. Journal of Singularities, Tome 1 (2010), pp. 146-168. doi: 10.5427/jsing.2010.1j
Cité par Sources :