Approximation by a Composition of Apostol-Genocchi and Pǎltǎnea-Durrmeyer Operators
Kragujevac Journal of Mathematics, Tome 48 (2024) no. 4, p. 629 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The present paper deals with the Durrmeyer construction of operators based on a class of orthogonal polynomials called Apostol-Genocchi polynomials. For the proposed operators, we first establish a global approximation result followed by its convergence estimate in terms of usual, $r$-th and weighted modulus of continuity. We further study the asymptotic type results such as the Voronovskaya theorem and quantitative Voronovskaya theorem. Moreover, we estimate the rate of pointwise convergence of the proposed operators for functions of bounded variation defined on the interval $(0,\infty)$. Finally, the results are validated through graphical representations and an absolute error table.
DOI : 10.46793/KgJMat2404.629M
Classification : 41A25 41A36, 11B83
Keywords: Apostol-Genocchi polynomials, Pǎltǎnea basis, generating functions, special functions, functions of bounded variation
@article{10_46793_KgJMat2404_629M,
     author = {Nav Shakti Mishra and Naokant Deo},
     title = {Approximation by a {Composition} of {Apostol-Genocchi} and {Pǎltǎnea-Durrmeyer} {Operators}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {629 },
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2024},
     doi = {10.46793/KgJMat2404.629M},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2404.629M/}
}
TY  - JOUR
AU  - Nav Shakti Mishra
AU  - Naokant Deo
TI  - Approximation by a Composition of Apostol-Genocchi and Pǎltǎnea-Durrmeyer Operators
JO  - Kragujevac Journal of Mathematics
PY  - 2024
SP  - 629 
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2404.629M/
DO  - 10.46793/KgJMat2404.629M
LA  - en
ID  - 10_46793_KgJMat2404_629M
ER  - 
%0 Journal Article
%A Nav Shakti Mishra
%A Naokant Deo
%T Approximation by a Composition of Apostol-Genocchi and Pǎltǎnea-Durrmeyer Operators
%J Kragujevac Journal of Mathematics
%D 2024
%P 629 
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2404.629M/
%R 10.46793/KgJMat2404.629M
%G en
%F 10_46793_KgJMat2404_629M
Nav Shakti Mishra; Naokant Deo. Approximation by a Composition of Apostol-Genocchi and Pǎltǎnea-Durrmeyer Operators. Kragujevac Journal of Mathematics, Tome 48 (2024) no. 4, p. 629 . doi : 10.46793/KgJMat2404.629M. http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2404.629M/

Cité par Sources :