Three-Weight and Five-Weight Linear Codes over Finite Fields
Kragujevac Journal of Mathematics, Tome 48 (2024) no. 3, p. 345 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Recently, linear codes constructed from defining sets have been studied extensively. For an odd prime $p$, let $\mathrm{ \mathrm{Tr}}^{m}_{e}$ be the trace function from $\mathbb{F}_{p^m}$ onto $\mathbb{F}_{p^e}$, where $e$ is a divisor of $m$. In this paper, for the defining set $D=\{x\in\mathbb{F}_{p^m}^{*}: \mathrm{ \mathrm{Tr}}^{m}_{e}(x^2+x)=0\}=\{d_{1}, d_{2}, \ldots, d_{n}\}$ (say), we define a $p^e$-ary linear code $\mathcal{C}_{D}$ by $\mathcal{C}_{D}=\{\boldmath{c}_{x} =\big( \mathrm{ \mathrm{ \mathrm{Tr}}}^{m}_{e}(xd_{1}), \mathrm{ \mathrm{Tr}}^{m}_{e}(xd_{2}),..., \mathrm{ \mathrm{Tr}}^{m}_{e}(xd_{n})\big ) : xı \mathbb{F}_{p^m}\}$ and present three-weight and five-weight linear codes with their weight distributions. We show that each nonzero codeword of $\mathcal{C}_{D}$ is minimal for $\frac{m}{e}\geq5$ and, thus, such codes are applicable in secret sharing schemes.
DOI : 10.46793/KgJMat2403.345K
Classification : 11T71, 94B05
Keywords: linear code, weight distribution, Gauss sum, cyclotomic number, secret sharing
@article{10_46793_KgJMat2403_345K,
     author = {Pavan Kumar and Noor Mohammad Khan},
     title = {Three-Weight and {Five-Weight} {Linear} {Codes} over {Finite} {Fields}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {345 },
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2024},
     doi = {10.46793/KgJMat2403.345K},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2403.345K/}
}
TY  - JOUR
AU  - Pavan Kumar
AU  - Noor Mohammad Khan
TI  - Three-Weight and Five-Weight Linear Codes over Finite Fields
JO  - Kragujevac Journal of Mathematics
PY  - 2024
SP  - 345 
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2403.345K/
DO  - 10.46793/KgJMat2403.345K
LA  - en
ID  - 10_46793_KgJMat2403_345K
ER  - 
%0 Journal Article
%A Pavan Kumar
%A Noor Mohammad Khan
%T Three-Weight and Five-Weight Linear Codes over Finite Fields
%J Kragujevac Journal of Mathematics
%D 2024
%P 345 
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2403.345K/
%R 10.46793/KgJMat2403.345K
%G en
%F 10_46793_KgJMat2403_345K
Pavan Kumar; Noor Mohammad Khan. Three-Weight and Five-Weight Linear Codes over Finite Fields. Kragujevac Journal of Mathematics, Tome 48 (2024) no. 3, p. 345 . doi : 10.46793/KgJMat2403.345K. http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2403.345K/

Cité par Sources :